Also see my publications at dblp and Google scholar.

Selected Articles

Kohn, T. and Manaris, B.: Tell Me What’s Wrong: A Python IDE with Error Messages.  In Proceedings of the 2020 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’20). ACM, Portland, OR, USA, 1054-1060, DOI: https://doi.org/10.1145/3328778.3366920.

Alan F. Blackwell, Luke Church, Martin Erwig, James Geddes, Andy Gordon, Maria Gorinova, Atilim Gunes Baydin, Bradley Gram-Hansen, Tobias Kohn, Neil Lawrence, Vikash Mansinghka, Brooks Paige, Tomas Petricek, Diana Robinson, Advait Sarkar, Oliver Strickson: Usability of Probabilistic Programming LanguagesPPIG 2019.

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood: LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models. AISTATS 2019, Naha, Okinawa, Japan. (arXiv preprint).

Tobias Kohn, Dennis Komm: Denn sie wissen nicht, was sie programmieren.  In Informatik Spektrum, March 2019. DOI: https://doi.org/10.1007/s00287-019-01157-2.

Tobias Kohn: The Error Behind The Message: Finding the Cause of Error Messages in Python. In Proceedings of the 2019 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’19). ACM, New York, NY, USA. DOI: https://doi.org/10.1145/3287324.3287381.

Tobias Kohn, Dennis Komm: Teaching Programming and Algorithmic Complexity with Tangible Machines. In: Pozdniakiv, S., Dagien, V. (eds): Informatics in Schools. Fundamentals of Computer Science and Software Engineering. ISSEP 2018. Lecture Notes in Computer Science, vol. 11169, Springer, Cham.

Bradley Gram-Hansen, Yuan Zhou, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood: Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities. PROBPROG’18, October 2018, Boston, MA, USA.

Dennis Komm, Tobias Kohn: An Introduction to Running Time Analysis for an SOI Workshop. Olympiads in Informatics, 2017, Vol. 11, 77-86. DOI: https://doi.org/10.15388/ioi.2017.06.

Tobias Kohn: Variable Evaluation: an Exploration of Novice Programmers’ Understanding and Common Misconceptions. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA, 345-350. DOI: https://doi.org/10.1145/3017680.3017724.

Juraj Hromkovič, Tobias Kohn, Dennis Komm, Giovanni Serafini: Examples of Algorithmic Thinking in Programming Education. Olympiads in Informatics, 2016, Vol. 10, 111-124. DOI: https://doi.org/10.15388/ioi.2016.08.

Juraj Hromkovič, Tobias Kohn, Dennis Komm, Giovanni Serafini: Combining the Power of Python with the Simplicity of Logo for a Sustainable Computer Science Education. In: Brodnik A., Tort F. (eds): Informatics in Schools: Improvement of Informatics Knowledge and Perception. ISSEP 2016. Lecture Notes in Computer Science, vol 9973. Springer, Cham.

Books

Juraj Hromkovič, Tobias Kohn: Einfach Informatik – Programmieren.  Klett und Balmer, 2018.
An introduction to programming with Python for grades 7 to 9.  On klett.ch or amazon.de.

Theses

PhD Thesis

Teaching Python Programming to Novices: Addressing Misconceptions and Creating a Development Environment
An investigation of some misconceptions of high school students when they learn to program, and the design of a parser for Python with improved error detection

Master/Diploma Thesis

Self-Similar Shrinkers in R^3
An investigation of stable manifolds under mean curvature flow (differential geometry)