
Variable Evaluation: an Exploration of Novice
Programmers’ Understanding and Common

Misconceptions

Tobias Kohn
ETH Zurich

Universitätstrasse 6
CH-8092 Zurich

kohnt@inf.ethz.ch

ABSTRACT
For novice programmers one of the most problematic con-
cepts is variable assignment and evaluation. Several ques-
tions emerge in the mind of the beginner, such as what does
x = 7 + 4 or x = x + 1 really mean? For instance, many
students initially think that such statements store the entire
calculation in variable x, evaluating the result lazily when
actually needed. The common increment pattern x = x + 1
is even believed to be outright impossible.

This paper discusses a multi-year project examining how
high school students think of assignments and variables. In
particular, where does the misconception of storing entire
calculations come from? Can we explain the students’ think-
ing and help them develop correct models of how program-
ming works?

It is particularly striking that a model of the computer as
a machine with algebraic capabilities would indeed produce
the observed misconceptions. The misconception might sim-
ply be attributed to the expectation that the computer per-
forms computations the exact same way students are taught
to in mathematics.

Keywords
Programming; misconceptions; variables; novices; learning

1. INTRODUCTION
Computer science is not only an important field in the sci-

ences but also offers some unique and highly relevant contri-
butions to general education. Accordingly, there are numer-
ous efforts to establish computer science in K-12 education
and make the merits of algorithmic thinking available to the
general population.

Programming is a fundamental part of CS education. To
be successful in teaching programming, however, it is imper-
ative that we study the mistakes and comprehension of our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08 - 11, 2017, Seattle, WA, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017724

students. With a good understanding of where the difficul-
ties lie we can much better guide our students to success.

A particularly difficult topic in learning to program are
variables and assignments. First reports date back more
than thirty years (see, e. g., [3]). Numerous studies followed,
most of which concentrated on students at university level
(see the section about related work). It is highly possible,
though, that the difficulties with variables and assignments
are due to some deeper misconception about how a com-
puter program is actually being executed. There might also
be some differences between students at high school and uni-
versity level.

In this paper we present some misconceptions of high
school students in connection with variables, assignments,
and the time of evaluation. For this study, we analyzed stu-
dents’ tests, collected during four years of teaching Python
programming in high school. In our setting, the program-
ming course is part of classes in advanced and applied math-
ematics. In addition to programming we also teach some
math classes. This allows us to directly compare the stu-
dents’ work in mathematics and programming, even though
a student rarely has the same teacher for both classes.

1.1 Mathematical Techniques in Programming
During classroom sessions some students distinctly ap-

plied techniques and methods from mathematics to pro-
gramming. This might lead to incorrect results. Some stu-
dents, for instance, started their programs to solve quadratic
equations with the following two lines:

x = unknown
quEq = a ∗ x∗∗2 + b ∗ x + c = 0

In informal interviews, students explained that they have to
tell the computer first what a quadratic equation is before
they can provide the actual solutions. Based on such in-
stances of misapplication we looked for further examples and
evidence that some misconceptions in programming might
be due to mathematical practices applied in the wrong places.

Based on the collected information we assume that stu-
dents apply a model of mathematical substitution to pro-
gramming, leading to the observed mistakes. More pre-
cisely, when students perform calculations in mathematics
they frequently substitute parameters and variables, mak-
ing use of previously established relationships (e. g., know-
ing that y = 2x, we can replace y in subsequent calculations
by 2x. This works even in the case where we do not know
the value of x). Roughly a third of our students in program-

ming class applied the same model of variable substitution
to programming at one point or another.

Python programs, however, are executed with a different
model. The main difference is that in Python assignments
are evaluated immediately, assigning a concrete value to a
variable. Variables are not mere symbols as in mathematics
but represent a concrete object.

1.2 Organization of the Paper
The rest of this paper is organized as follows. Section 2

gives an overview of related work with some comments on
where our work differs from others. Section 3 presents the
methodology used in this work. In Section 4, we present the
students’ answers we collected from four problem sets. Of
particular high value is a question where students were asked
to trace and determine the output of a program and explain
their reasoning for reaching their respective answers. The
discussion of these results together with our interpretation
is then found in Section 5.

2. OVERVIEW AND RELATED WORK
The literature about misconceptions of novice program-

mers is quite extensive. With a focus on variables and as-
signments, however, we list some noteworthy and common
misconceptions in the following three groups:

Syntax. Some students believe that assignments are sym-
metric, i. e. x = 2 and 2 = x are both valid. Others believe
that a variable’s name determines its contents, e. g., that a
variable called “max” will automatically hold the maximum
value of a list.

The Nature of Variables. Variables are sometimes seen
as boxes that can hold more than one value or have a mem-
ory. Some students also think that after a variable has been
accessed, it is “empty” afterwards.

An interesting misconception is that variables hold un-
evaluated expressions such as 2 + 3 or x + 1. The actual
value would then be computed when the variable’s value is
accessed. This notion is discussed in detail in this paper.

Assignments. Due to the syntactical similarity with
equations, some students believe that assignments are ac-
tual equations to be solved by the computer. Others believe
that an assignment such as x = y links the two variables
together, so that x and y will always hold the same value.

This last misconception of x = y linking x and y together
becomes much more relevant when references are introduced.
For instance, in Python x and y might indeed be linked
together if y is a list.

Interestingly, some students believe that the entire “equa-
tion” is stored. This misconception is very similar to the no-
tion that a variable holds the entire unevaluated expression.
The difference between this misconception and the idea that
a variable holds an unevaluated expression might lie in that
some students do not think in terms of variables at all but
assume that the computer stores equations independently of
variables.

2.1 Studies about Misconceptions
A study by Du Boulay includes a rather comprehensive

discussion about inappropriate analogies for assignment and
variables [3]. According to Du Boulay, some problems arise
due to the syntax. The use of the equal sign ‘=’ suggests a
symmetry so that it would be possible to write either x =
2 or 2 = x. In addition, the similarity with equations is

problematic, leading to the believe that x = y links the two
variables together.

Other problems with variables are a result of the use of
the “box”-metaphor, leading to the belief that a variable
can hold more than one value. Of particular interest is the
misconception about assignments such as x = 7 + 4: “A
further misunderstanding concerns the assignment of values
derived from an expression LET A = 7+4. A student may
understand ‘A’ to hold 7+4 as an unevaluated expression
rather than 11. In some [BASIC dialects] ‘A’ is only allowed
to hold numbers, so this misunderstanding can be tackled by
stressing the idea that a variable can hold only one number.”
[3]

We believe, however, that in the view of students the no-
tion of a variable “holding only one number” is not necessar-
ily in conflict with the variable standing for the unevaluated
expression 7 + 4. From a mathematical perspective there is
no contradiction between saying that x stands for a single
number and writing x = 7 + 4, because 7 + 4 eventually
evaluates to a single number. Hence, given the mathemati-
cal training of typical programming students, stressing that
a variable can only hold one number might not be enough
to avoid misconceptions.

Bayman and Mayer studied the misconceptions of novice
Basic programmers [1]. They note that students get con-
fused about the equal sign in assignments, seeing it as an
equation rather than as an assignment. They also note that
“a major misconception is to think that the equation is stored
in memory.”

For example, their subjects were asked to explain the
statement “LET A = B + 1”. 43 % answered that the state-
ment would write the equation into memory and 33 % said
that it would write B + 1 to memory space A (with 30 %
giving the correct answer of writing the obtained value from
B + 1 to memory space A). We find it noteworthy that a
third of the students understood the basic nature of an as-
signment (and that it is not an equation) and still believed
that the entire expression B+1 would be stored in memory.
This corresponds quite well with our own findings.

Similarly, Putnam et al. [12] found two errors related to
the assignment, including the assumed symmetry mentioned
above. One student had a “deeper misconception involving
the use of an assignment statement as a counter. He declared
that the statement LET C = C + 1 was impossible. He had
previously assigned the value of 0 to C and interpreted the
statement as ‘LET 0 equal 0+1.’” [12]

Samurçay notes that programming students start with
an “initial but insufficient model” of variables derived from
mathematics and that “the programming variable is a new
concept for the student” [13].

According to Samurçay, particularly in the context of loops
the mathematical model of a variable is inappropriate be-
cause “the mathematical description of a variable is a static
one.” The focus of Samurçay’s study, however, is on the dif-
ficulties of different tasks and roles of variables. More recent
studies then propose to explicitly teach the roles of variables
to enhance the students’ understanding [2, 6, 11].

2.2 Recent Studies about Difficulties
Some recent studies about the difficulties of novice pro-

grammers used surveys to determine the most difficult top-
ics for programming novices, e. g. [4, 7]. In contrast to the
various misconceptions about variables, the studies found

that variables rank among the least difficult topics, together
with selection and loop structures. The studies, however,
did not provide a means to detect students’ misconception.
Hence, students might just not be aware of their difficulties.

Another comprehensive study by Lister at al. [8] analyzed
students’ reading and tracing skills. They found that the
students’ knowledge in programming is often fragile, but
they also noted that they “see few comprehension errors due
to misconceptions.” [8] It is interesting to note that trac-
ing on paper and thereby documenting changes in variables
increases the likelihood of getting the correct answer. How-
ever, as the assignments used in the study’s programs con-
tained little dependencies on other variables, it is hard to
draw firm conclusions about the misconceptions concerning
the evaluation of variables.

3. METHODOLOGY
As part of a four-semester course in applied and advanced

mathematics we teach introduction to programming for two
semesters with two hours each week. Students with ad-
vanced placement in math and the sciences are required to
take this class during 10th grade. The class has been taught
four times with about ten students each year using Python.

The syntax of Python turned out to pose virtually no
problems for the students, confirming that Python is a suit-
able language for programming at high school [4].

The comparatively low number of students per class al-
lows us to closely observe the students’ progress and con-
duct informal interviews in case of problems and misunder-
standings. The entire class emphasizes hands-on with little
instruction from the teachers.

During the four-year period we kept a journal of students’
problems, questions and noteworthy ideas. This journal was
the initial source and motivation for identifying common
misconceptions.

We then looked at the tests written by students in those
four years in order to find further examples and assess how
many students exhibit the patterns of misconception. Each
year the students were required to write five to six tests
with paper and pencil. During the tests students had no ac-
cess to a computer. Previously the tests were written using
computers but especially weaker students were not able to
complete the tests in time as they spent most of their time
correcting minor syntactical issues. The questions mostly
varied over the years so that not all students answered all
questions used in this study.

From the tests we have chosen four problems to include in
our study (where N is the number of students who provided
a solution):

[P1] Write a program to solve the quadratic equation ax2 +
bx + c = 0. Make sure you handle special cases such
as when no solutions exist. (N = 20)

[P2] Write a program to find all Pythagorean triples a2 +
b2 = c2 with a, b, c < 100. (N = 24)

[P3] Write a program to draw the graph of the function
f(x) = x(x − 5)(x + 5)/25 in the range between −40
and 40. (N = 20)

[P4] Trace the given program, write down the output and
explain your solution. (N = 10)

Ethical review. This study was conducted on the an-
swers students had given during their regular tests. None
of the questions were actually designed for study purposes.
In addition, answers were only used in anonymized form,
and no personal information has been shared with any third
party. Since no student has been affected by this study in
any way, Switzerland requires no review by the ethics com-
mission.

4. RESULTS
Based on classroom experience we assumed that some

students have the misconception that a variable’s value is
not evaluated during assignment, but that the evaluation
is rather deferred until the variable is actually accessed or
used. Several studies reported similar misconceptions, e. g.,
[1, 3] (see section about related work).

From the tests conducted in our programming class we
then selected four problems and examined the student’s an-
swers. Our goal was to find concrete examples where the
students might believe that the evaluation of a variable’s
value is deferred until the variable is read. We also wanted
to find out how many of the students might have this mis-
conception. The results of this examination are presented in
this section.

4.1 Testing for Computability after the Com-
putation

The formula for the solution of a quadratic equation does
not necessarily yield real results. If the discriminant is neg-
ative no real solutions exist and Python throws an excep-
tion “math domain error”. In problem [P1], students were
therefore asked to write a condition and test for a negative
discriminant prior to calculating its root.

Since all students had recent experience with the quadratic
formula from math class we expected little problems with
this question. Students also learn in math class that some
quadratic equations have no solutions, and that this can be
recognized by a negative discriminant. Complex numbers
(and solutions) are only discussed later in the curriculum.

Instead of the correct solution we found some students
testing whether the root of the discriminant is non-negative
(i. e.,

√
D ≥ 0 instead of D ≥ 0) and some testing for the co-

efficient a to be non-zero in order to avoid a division by zero.
For our study about programming misconceptions, however,
we were interested in those who calculated the solution be-
fore testing whether the solutions could be calculated at all.

Performing a test for computability after the actual com-
putation does not make sense, and students should certainly
be aware of that. Yet, this order can be explained if a stu-
dent is not aware that the assignment does perform the com-
putation, but rather assumes a model of deferred evaluation.

The typical pattern of calculating the solution prior to
testing for problems is exhibited in the following, slightly
simplified, program of a student (in reality, students were
asked to retrieve both solutions and write a complete pro-
gram):

x = (−b + s q r t (b∗∗2 − 4∗a∗c))/ (2∗ a)
i f b∗∗2 − 4∗a∗c >= 0 :

print ”The s o l u t i o n i s ” , x

We included the problem of solving a quadratic equation
in the tests of two distinct classes (ten students each). In
the first class, four students exhibited the above pattern of

calculation before testing and one student did not perform
any testing in his code at all.

In the second class, after a more thorough discussion in
class of the problem, no student made this particular mistake
(but not all answers were correct).

4.2 Dependence on other Variables
In the context of a looping structure, deferred evaluation

of a variable’s value might even lead to the variable changing
its value with each iteration. An assignment such as y = 2∗x
with a dependency on a second variable x is then believed to
automatically reflect changes to x. In essence, y becomes an
implicit function with the parameter x. We found evidence
for this pattern in two problems.

The first problem [P2] asked students to write a program
that finds all Pythagorean triples (a, b, c) with a2 + b2 =
c2 and a, b, c < 100. Most students solved this problem
straightforward with nested loops and a test such as

i f a∗∗2 + b∗∗2 == c ∗∗2 :

Some students calculated c =
√
a2 + b2 and tested whether

it was an integer using if c % 1 == 0.
In total, 24 students answered this question. Three stu-

dents used the pattern of deferred and thereby repeated eval-
uation. A typical example of such a student’s solution looks
as follows:

c = math . s q r t (a∗∗2 + b∗∗2)
for a in range (1 , 10 0) :

for b in range (1 , 10 0) :
i f c % 1 == 0 :

print a , b , c

The second problem [P3] asked students to draw the graph
of a given (mathematical) function as a sequence of line
segments. Due to the mathematical function (in our case
f(x) = x · (x − 5) · (x + 5)/25) and previous classroom ex-
perience we expected this question to be especially prone to
the pattern of deferred evaluation. A typical program of a
student would then look like this:

x = −40
y = x ∗(x−5)∗(x+5) / 25
se tpos (x , y)
for i in range (8 0) :

x += 1
l i n e t o (x , y)

Of the 30 students who had this question in their tests, ten
did not provide a viable solution (they either did not an-
swer the question at all or they tried to draw the graph by
calculating the necessary values by hand first). Six of the
remaining 20 students showed the pattern of deferred eval-
uation.

Some students had both problems [P2] and [P3] in their
tests. However, surprisingly, no student showed the pattern
of deferred evaluation in both questions.

4.3 Tracing Values
One class of ten students was asked to determine the out-

put of the following Python program in problem [P4]. In
addition to giving simple numbers as output, we asked the
students to explain their solutions.

x = 5

def f (x) :
return x∗x

g = x∗x
x = 8
print f (2)
print f (x)
print g

The correct answer is that the program prints the numbers
4, 64 and 25. Of the ten students three came up with the
correct answer. Another three students said that the last
print-statement would also output 64. The remaining four
students had completely different answers. The three stu-
dents who thought that the last number would be 64 all
reasoned that g equals x∗x and that at the point of printing
x holds a value of 8. They described a two-stage process
where g is first replaced by x∗x and, subsequently, the x is
replaced by 8.

Two of the remaining students reasoned that the print f(x)-
statement would not work at all. One wrote that the x would
have to be replaced by some concrete numeric value for the
function to be evaluated (instead of just leaving the abstract
parameter). The other wrote that f(x) could not be evalu-
ated since x had two possible values (5 and 8).

Another student claimed that the output would be three
times 64 because the x = 5 would not make any sense at all
as it was in the wrong place. The last student believed that
the output of print f(x) would also be 25, hence ignoring
the assignment x = 8.

In other words, three of the ten students answering this
question believed that the value of g would not be evaluated
until it was actually printed. Another three students said
that the given code violated some rule regarding variables.

4.4 Summary
The following table summarizes the frequency of the pat-

tern of deferred evaluation in the four problems studied. For
each problem we give the number of students exhibiting the
pattern as well as the total number of students who provided
a solution.

[P1] Quadratic equation 4 20
[P2] Pythagorean triples 3 24
[P3] Graph of a function 6 20
[P4] Tracing values 3 10

5. DISCUSSION
With a total number of only about 40 students our figures

are not sufficient to give a reliable statistical result. In addi-
tion, problem [P2] of finding Pythagorean triples is probably
a bad example for statistical analysis because most students
saw no need for using an assignment that might show the
pattern, anyways. In case of problem [P3] of drawing the
graph of a function, some mistakes might be due to a simple
oversight instead of an underlying misconception. However,
the figures show that the pattern of deferred evaluation oc-
curs frequently enough to warrant a discussion.

Of particular importance are the answers to problem [P4].
They show that, indeed, some students’ mental models of the
evaluation and assignment of variables are wrong. Roughly
a third of the students seems to have assumed that an as-
signment is evaluated lazily at the time when the variable’s
value is actually used.

5.1 Interpretation of the Results
From a programmer’s perspective students conceptually

use two different data types for their variables. The first type
represents numbers (we simplify here and do not distinguish
between integers and floating point numbers). The second
type represents calculations and is similar to functions. In-
dications for the distinction between these two types can be
found in two places. Students who thought that g would
be evaluated to x∗x first and then to 8∗8 had no problems
with the two assignments x=5 and x=8 in [P4]. In addition,
our students showed no discernible effort in understanding
and using the variable x in problem [P3] when drawing the
graph of f(x).

Another interpretation is that students do not primarily
think in terms of variables and their values as a programmer
would. The assignment g=x∗x is not regarded as an instruc-
tion to evaluate x∗x and store the result as the value of a
variable g. Rather, the assignment establishes a relationship
that is later used to replace the symbol g in calculations.

The notion of using relationships such as g = x · x to re-
place g in subsequent calculations is exactly what we teach
students in math class. The pattern of deferred evaluation
actually corresponds quite directly to the way students solve
mathematical problems and perform calculations on their
own. We hence surmise that they expect the computer to
mimic the same methods they use. Our findings suggest
that students attribute algebraic capabilities to the execut-
ing machine. Students obviously fail to see that the notional
machine in imperative programming is a purely numerical
machine with no knowledge of algebraic relationships.

5.2 The Equation x = x + 1

In connection with the difficulties of variables and assign-
ment we often find the example of x = x + 1. For instance,
Du Boulay notes that “Beginners are often puzzled by such
assignments [. . .] precisely because they have not understood
the asymmetry and the sequential nature of the execution of
even this single assignment. The ‘x’ on each side of the ‘=’
sign are not treated in the same way. One stands for a lo-
cation and the other for a value.” [3] This passage implies
that the students’ difficulties arise because they assume the
computer replaces the x’s on both sides of the equation by
the current value of x, leading to an equation with numbers
only and no variables. Yet, according to our model the as-
signment is still confusing even when students understand
the different nature of the variables on the left and the right
hand side, respectively.

From a strict mathematical point of view, x = x + 1 is
an unsolvable equation and thus does not make sense for a
novice programmer. But even when students do understand
that this is an assignment and not an equation, it still does
not make sense in a “mathematical” model of substitution
where variables can be replaced by their assigned expression.
In this case, we get an infinite expansion of x leading to x+1
leading to x + 1 + 1 etc.

In order to avoid the problem of x = x + 1 altogether
we consequently used the statement x += 1 instead. At
first students seemed to work well with this alternative no-
tation. However, closer inspection revealed that many either
dropped the equal sign and simply wrote x + 1 as a state-
ment to increment the value of x. Or they attempted to
expand the statement in invalid ways, e. g. (x += 1) ∗ 3.

5.3 The Notional Machine
Du Boulay notes that learning to program does not only

include mastery of the notation (syntax and semantics) of a
given programming language [3]. Rather, the learning pro-
cess also includes mastery of the “notional machine” and
acquiring standard structures or plans.

The notional machine is an abstract concept describing
how a program is executed, and differs from the actual im-
plementation. When reasoning about objects, for instance,
we usually see them as an inherent feature of the system like
Python or Java; we see them as a feature of the notional ma-
chine. How the objects themselves are implemented is not
important and might even differ, depending on the underly-
ing system.

The observed difficulties with variables and assignments
can indeed be attributed to a misconception about the no-
tional machine executing the programs. Students seem to
believe that the machine is capable of algebraic manipula-
tion of the expressions used in the program: during evalua-
tion a variable would be replaced by its defining expression
instead of a previously determined numeric value.

In other words: students seem to expect the computer to
perform computations the same way they have been trained
in mathematics. The substitution of variables by expres-
sion is a very common operation in mathematics. However,
variables are then only thought of as symbols representing
something else, while in programming variables have a much
narrower meaning.

5.4 Proposed Solutions
To address the students’ misconceptions and provide them

with a suitable model for the notional machine we equipped
our Python environment with a visualizing debugger. The
basic design followed Guo’s “Online Python Tutor” [5]. Ini-
tial experience shows that the visualizer is a very helpful
tool for teaching and explaining certain concepts about the
notional machine. We also found that our students made
slightly fewer mistakes that could be attributed to a mis-
conception about variable evaluation.

However, most students were rather reluctant in using the
visualizer on their own and according to a short survey they
did not find it particularly helpful. Ma et al. [9] also note
that “Visualization techniques have been used for over 20
years and have, arguably, not been as successful as hoped
for.” The observed improvement might therefore be due to
other reasons.

More promising results were achieved in other classes (not
part of this study), where students explicitly learned to trace
programs by hand and keep tally of the variable’s values.
This is also in accordance with the findings of Lister et al.
[8] that documenting the changes in variables helps students
correctly predict a program’s output. It should be noted,
however, that manual tracing of a program might not suf-
fice. Even in the classes which had learnt to manually trace
programs, some students did not have or use a correct model
of the notional machine.

It is interesting to note that a study about educational
videos found that, in order to be effective as learning tools,
the videos must first confront the learner with possible mis-
conceptions [10]. The study compared learning outcomes of
physics students after being exposed to different videos. The
study indicates that students who watched the videos with-
out a discussion of common misconceptions seem unaware of

the discrepancies between their own mental model and the
presented models. Hence, “misconception treatments should
activate students’ prior knowledge and help them recognize
any disparity between their ideas and correct scientific theo-
ries.” [10]

Applied to our case, it might simply not be enough to use
visualizations and show students how the notional machine
works. In order to build viable mental models, students
must be prompted to interactively work with the notional
machine and recognize differences from their current mental
models. A possible way to achieve this interaction could be
to teach students how to trace a program with paper and
pencil, and check the obtained results.

Future research will have to determine both how frequent
these misconceptions are on a wider base, and how effective
different teaching methods turn out to be in addressing these
misconceptions.

6. CONCLUSIONS
Teaching and learning programming clearly is a complex

task. Many studies report that students’ knowledge of pro-
gramming is fragile [8] or that they still hold improper mod-
els of relatively simple concepts [9]. Some studies about
students’ difficulties specifically note that variables and as-
signment are a source of misconceptions [1, 3, 9, 13, 12].

Our work confirms that variables and assignment can be
problematic for novice high school programmers. We found
a pattern of deferred evaluation of variables in the programs
of about a third of our students. As a possible explanation
we pointed out that the students’ mistakes are consistent
with a model of the notional machine exhibiting algebraic
capabilities.

In order to address such misconceptions care must be
taken that programming students are fostered in developing
a correct and viable model of the notional machine. A first
step towards this goal is to help students identify discrep-
ancies between their own beliefs and correct models. We
propose to use interactive visualizations and to explicitly
teach students how to trace a program by hand.

7. REFERENCES
[1] P. Bayman and R. E. Mayer. A diagnosis of beginning

programmers’ misconceptions of basic programming
statements. Commun. ACM, 26(9):677–679, Sept.
1983.

[2] P. Byckling and J. Sajaniemi. Roles of variables and
programming skills improvement. SIGCSE Bull.,
38(1):413–417, Mar. 2006.

[3] B. Du Boulay. Some difficulties of learning to
program. Journal of Educational Computing Research,
2:57–73, 1986.

[4] L. Grandell, M. Peltomäki, R.-J. Back, and
T. Salakoski. Why complicate things?: Introducing
programming in high school using python. In
Proceedings of the 8th Australasian Conference on
Computing Education - Volume 52, ACE ’06, pages
71–80, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc.

[5] P. J. Guo. Online python tutor: Embeddable
web-based program visualization for cs education. In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, pages
579–584, New York, NY, USA, 2013. ACM.

[6] M. Kuittinen and J. Sajaniemi. Teaching roles of
variables in elementary programming courses. SIGCSE
Bull., 36(3):57–61, June 2004.

[7] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A
study of the difficulties of novice programmers.
ITiCSE ’05 Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer
science education, pages 14–18, 2005.

[8] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone,
J. Hamer, M. Lindholm, R. McCartney, J. E.
Moström, K. Sanders, O. Seppälä, B. Simon, and
L. Thomas. A multi-national study of reading and
tracing skills in novice programmers. SIGCSE Bull.,
36(4):119–150, June 2004.

[9] L. Ma, J. Ferguson, M. Roper, and M. Wood.
Investigating the viability of mental models held by
novice programmers. SIGCSE Bull., 39(1):499–503,
Mar. 2007.

[10] D. Muller, J. Bewes, M. Sharma, and P. Reimann.
Saying the wrong thing: improving learning with
multimedia by including misconceptions. Journal of
Computer Assisted Learning, 24(2):144–155, 2008.

[11] U. Nikula, J. Sajaniemi, M. Tedre, and S. Wray.
Python and roles of variables in introductory
programming: Experiences from three educational
institutions. JITE, 6:199–214, 2007.

[12] R. T. Putnam, D. Sleeman, J. A. Baxter, and L. K.
Kuspa. A summary of misconceptions of high school
basic programmers. Journal of Educational Computing
Research, 2(4):459–472, 1986.

[13] R. Samurçay. The concept of variable in
programming–its meaning and use in problem-solving.
Educational Studies in Mathematics, 16(2):143–161,
1985.

