
DISS. ETH NO. 24076

Teaching Python Programming to

Novices: Addressing Misconceptions

and Creating a Development

Environment
A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

Tobias Kohn
Dipl. Math, ETH Zurich

born on January 31, 1982

citizen of Endingen (AG)

accepted on the recommendation of

Prof. Dr. Juraj Hromkovič, examiner

Prof. Dr. Bill Manaris, co-examiner

Prof. Dr. Thomas R. Gross, co-examiner

Prof. Dr. Jürg Gutknecht, co-examiner

2017

Tobias Kohn

Teaching Python Programming to Novices: Addressing Misconceptions

and Creating a Development Environment

Examination date: Dec 22, 2016

2017

ISBN: 978-3-906327-80-8

DOI: 10.3929/ethz-a-010871088

ETH Zurich

Department of Computer Science

Chair of Information Technology and Education

Universitaetstrasse 6

CH-8092 Zurich

Switzerland

Für Sarah

Abstract

One of the great challenges in teaching to program is to help students under-

stand how programming actually works. Students unavoidably develop mis-

conceptions during their learning process, which must be corrected through

skillful feedback. Such misconceptions reach from rather simple syntactical

problems to deep underlying misunderstandings about what a computational

machine is, and how it works. With the objective to assist the students in de-

veloping correct mental models, we must understand these misconceptions,

and how to correct them.

An example of a misconception about the syntax is the well-documented

problem that the assignment operator is believed to be symmetric, i. e., 2 = x

is seen as equivalent to x = 2. At the other end of the spectrum, we find fun-

damental misconceptions about the computational machine itself. One such

misconception is to apply a model of mathematical procedure to the compu-

tational machine, and thereby attribute algebraic capabilities to the machine.

This is evidenced by the belief that the statement y = 2*x establishes a link

between the two variables x and y, so that any change of x is subsequently

also reflected by y.

The primary and foremost means to detect misconceptions is through care-

ful analysis of the students’ mistakes and errors. While some errors lead to syn-

tactically incorrect programs, which are not even accepted by the computer,

and therefore quickly recognized, other errors show themselved in incorrect

PhD-Thesis, Tobias Kohn, 2017

vi

outputs once the program is run. However, the main question to answer is:

what can we infer about a student’s mental models and misconceptions from

his or her errors?

This dissertation investigates the errors of novice programming students

in high school. In particular, it provides evidence that some students apply a

model of mathematical substitution when reasoning about variables in a pro-

gram. This misconception is relevant as it directly pertains the sequential na-

ture and data abstraction as employed in imperative computer programming;

in fact, variables are a core concept in imperative programming. However,

the dissertation also proposes a teaching method to specifically overcome this

misconception by carefully addressing it in the classroom. Preliminary results

are promising, and indicate that such dedicated teaching might indeed be ef-

fective.

During a period of five years, we have collected erroneous program of

novice programming high school students. Based on this collection, the dis-

sertation includes a list of common student errors. While there are several

such collections of student errors already available, this dissertation provides

the first collection based on the programming language Python. Python has

recently become a popular programming language for introductory courses.

At the same time, it differs significantly from more traditional programming

languages such as Java, in both syntax and execution model. Hence, many

previously documented errors do not apply equally to Python.

Finally, the dissertation describes a parser for Python programs, capable of

recognizing various error patterns, as documented in the collection of student

errors. The parser has been implemented as part of the educational Python

environment “TigerJython”, which has already found widespread use. More-

over, with the possibility to discern different errors more accurately than what

traditional Python environments provide, future research can study the rela-

tionships between the observed errors and the underlying misconception of

students in more detail.

PhD-Thesis, Tobias Kohn, 2017

Zusammenfassung

Eine der grossen Herausforderungen im Programmierunterricht besteht darin,

in den Lernenden das Verständnis zu fördern, wie Programmieren tatsäch-

lich funktioniert. Während ihres Lernprozesses machen Schüler und Studen-

ten unweigerlich Fehler und entwickeln Fehlvorstellungen, die durch gezielte

Rückmeldungen korrigiert werden müssen. Diese Fehlvorstellungen reichen

von einfachen syntaktischen Problemen bis hin zu einem tief liegenden Mis-

verständnis darüber, was eine Rechenmaschine eigentlich ist und wie sie funk-

tioniert. Mit dem Ziel, die Lernenden bei der Entwicklung korrekter mentaler

Modelle zu unterstützen müssen wie ihre Fehler und Fehlvorstellungen unter-

suchen und studieren, wie sie korrigiert werden können.

Ein bekanntes Beispiel für eine syntaktische Fehlvorstellung liegt im Glauben,

der Zuweisungsoperator sei symmetrisch. Die beiden Varianten x = 2 und

2 = x werden also als äquivalent angesehen. Auf der anderen Seite des Spek-

trums finden wir grundlegende Fehlvorstellungen über die Rechenmaschine

selbst. Zum Beispiel tendieren einige Lernende dazu, ihr mathematisches Vor-

wissen auf die Rechenmaschine zu übertragen und gehen dann davon aus,

dass die Maschine algebraische Fähigkeiten besitzt. Die Anweisung y = 2*x

wird dann so verstanden, dass sie die beiden Variablen x und y fest miteinan-

der verknüpft. Wenn wir später also den Wert von x ändern, dann würde diese

Änderung auch sofort im Wert von y sichtbar.

Das wichtigste Mittel, um Fehlvorstellungen zu erkennen und zu unter-

PhD-Thesis, Tobias Kohn, 2017

viii

suchen, ist eine sorgfältige Analyse der Fehler, die Schüler und Studenten

machen. Während einige Fehler zu syntaktisch falschen Programmen führen,

die schon vom Computer abgelehnt werden und daher einfach zu erkennen

sind, äussern sich andere Fehler erst in den falschen Ausgaben, wenn das

Programm ausgeführt wird. Die Hauptfrage ist aber in jedem Fall: Was für

Schlüsse können wir aus den beobachteten Fehlern ziehen, um die mentalen

Modelle und Fehlvorstellungen der Lernenden zu verstehen?

Die vorliegende Dissertation untersucht die Fehler von Schülerinnen und

Schülern im Gymnasium, die einen Anfängerkurs in der Programmierung be-

suchen. Dabei präsentieren wir vor allem auch Indizien dafür, dass einige der

Schüler ein Modell der mathematischen Substitution auf das Programmieren

anwenden, wenn es darum geht, das Verhalten von Variablen im Programm

zu erklären. Das ist insofern relevant, weil Variablen ein Kernkonzept der im-

perativen Programmierung darstellen. Tatsächlich hängen die Fehlvorstellun-

gen der Schüler direkt mit der sequentiellen Natur und der Datenabstraktion

zusammen, zwei essentiellen Begriffen für die Programmierung. Die Disserta-

tion stellt aber auch einen Ansatz vor, um diese Fehlvorstellungen in der Klasse

zu korrigieren, indem das Problem bewusst und gezielt angegangen wird. Er-

ste Ergebnisse dazu sind vielversprechend.

Während fünf Jahren haben wir eine Sammlung an fehlerhaften Program-

men von Gymnasialschülern angelegt. Basierend auf dieser Sammlung enthält

die Dissertation auch eine Liste mit häufigeren Fehlern. Natürlich gibt es bere-

its einige solche Listen und Zusammenstellungen, allerdings präsentieren wir

die erste Liste zur Programmiersprache Python. Python erfreut sich zur Zeit

wachsender Beliebtheit als Anfängersprache. Gleichzeitig unterscheidet sich

Python aber auch relativ stark von traditionelleren Sprachen wie Java, und

zwar sowohl in der Syntax als auch im Ausführungsmodell. Entsprechend

lassen sich viele frühere Ergebnisse nicht einfach übertragen.

Schliesslich stellt diese Dissertation auch einen Parser für Python vor, der

eine ganze Reihe von Fehlern erkennt, die zuvor dokumentiert wurden. Dieser

Parser ist bereits Teil der Python-Umgebung “TigerJython” für den Unterricht,

PhD-Thesis, Tobias Kohn, 2017

ix

die relativ weit verbreitet ist und vielfältig eingesetzt wird. Darüber hin-

aus ermöglicht die systematische Erkennung von Fehlern aber ach zukün-

ftige Forschung, insbesondere das Studium der Beziehungen zwischen den

beobachteten Fehlern und den tatsächlich zugrunde liegenden Fehlvorstellun-

gen.

PhD-Thesis, Tobias Kohn, 2017

x

PhD-Thesis, Tobias Kohn, 2017

Acknowledgments

Apart from the scientific results, the writing of this dissertation has brought

me in contact with many great people. I feel a deep gratitude for all the

opportunities, the support, and the friendship I have received during this time,

and I would like to express my highest appreciation. In particular, I would like

to thank the following people.

When I first approached Profs. Juraj Hromkovič and Jürg Gutknecht with

my ideas for this dissertation, I quickly found their full endorsement. I am

most grateful for their extensive support, their trust and skillful advice. Both

allowed me to always pursue my own ideas, and learn from my own mistakes,

while still guiding and assisting me when necessary. In addition, Prof. Thomas

R. Gross has supported and guided me in my studies of parsing technologies.

Moreover, he provided very helpful, extensive and detailed feedback to my

manuscripts of this dissertation, for which I am most grateful.

I further had the extraordinary fortune of also profiting highly from the

valuable insights and feedback of Prof. Bill Manaris during our numerous long

conversations. In addition to his great advice on many aspects of my work,

he helped me connect to the community of Computer Science education, and

invited me to join him at the SIGCSE conferences. I highly appreciate his

support.

I would like to extend my deepest gratitude to the team at the chair of

information technology and education. In particular, Giovanni Serafini, Den-

PhD-Thesis, Tobias Kohn, 2017

xii

nis Komm, Hans-Joachim Böckenhauer, Fabian Frei, Urs Hauser, Björn Steffen,

Lucia Keller, Ivana Kosírova, Elizabeta Cavar, Jan Lichtensteiger, and Blanca

Höhn, whose support has proven invaluable on so many occasions. As I have

had the pleasure of working closely together with Giovanni Serafini and Den-

nis Komm on several Workshops, I feel particularly connected to them, and

enjoyed our most productive collaborations. In addition, Hans-Joachim Böck-

enhauer has amazed me with his uncanny ability to spot (typing) errors in my

manuscripts. I would like to thank him and Dennis Komm for their careful

proofreading, and their skilled technical feedback.

Special thanks go to Blanca Höhn and Denise Spicher, who have been most

patient with me, and whose support and assistance in all the administrate

matters has been very valuable.

As Urs Hauser and Ivana Kosírova both teach programming at high schools

themselves, they offered me the opportunity to test many ideas at their schools

as well, and their professional feedback on my work has always been very

encouraging and helpful.

When I initially started to develop a small educational Python environ-

ment, Prof. Aegidius Plüss quickly saw the potential of reaching out to a

larger community. Meanwhile, the environment has grown into the much

larger TigerJython-project, in particular thanks to his incessant and enthu-

siastic work. The TigerJython-project has received various funds, has been

translated to several languages, and spread far beyond Switzerland. Aegidius

Plüss has not only provided invaluable feedback to all aspects of my parser

and programming environment, but also always given great advice.

Lorenz Halbeisen of the Mathematics department has been my mentor in

mathematical logic. He has guided me in developping a much deeper under-

standing of mathematics, and thereby enabled me to see much more clearly

the differences between mathematics and programming. I highly appreciate

his help and our insightful discussions.

I would like to thank Martin Zimmermann. During my entire doctoral

studies, I have been teaching at his high school. As principal, he has always

PhD-Thesis, Tobias Kohn, 2017

xiii

generously supported my studies and projects without hesitation.

Most importantly, I feel a deep gratitude towards Sarah Frei, who has al-

ways given me her full support and love.

PhD-Thesis, Tobias Kohn, 2017

xiv

PhD-Thesis, Tobias Kohn, 2017

Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Theses and Contributions . 5

1.3 Organization of the Dissertation 9

2 The Educational Python-Environment TigerJython 11

2.1 Introduction . 11

2.2 Building Upon Classroom Experience 14

2.2.1 Input and Output . 14

2.2.2 Location of Error Messages 17

2.3 Jython . 21

2.3.1 Controlling Program Execution in Jython 22

2.3.2 Changes to Jython . 24

2.4 Debugger . 25

2.4.1 Variables and Types in Python 26

2.4.2 Displaying Frames and Variables 28

3 The Python Programming Language 31

3.1 Introduction . 31

3.1.1 A Short Summary of Python’s Basic Features 32

3.1.2 Python’s Terminology 33

PhD-Thesis, Tobias Kohn, 2017

xvi CONTENTS

3.2 Examples of Python Programs 34

3.3 Variables and the Type System 38

3.4 Python’s Grammar . 41

3.4.1 Expressions . 42

3.4.2 Statements . 44

3.5 Changes to the Python Programming Language 46

4 The Models of Mathematics and Programming 49

4.1 Introduction . 49

4.1.1 Organization . 52

4.2 Variables in Mathematics . 52

4.3 Variables in Programming . 54

4.4 Functions . 57

4.5 Conclusion . 58

5 An Investigation of the Concept of Variables in the Context of Pro-

gramming Education 61

5.1 Introduction . 61

5.1.1 Theses . 62

5.1.2 Organization . 62

5.2 Related Work about Students’ Misconceptions 63

5.2.1 Studies about Misconceptions 63

5.2.2 Recent Studies on Difficulties 67

5.3 Students’ Misconceptions about Variable Assignment and Eval-

uation . 67

5.3.1 Methodology . 67

5.3.2 Summary . 69

5.3.3 Quadratic Equations [P1] 70

5.3.4 The Graph of a Function (1) [P2] 71

5.3.5 The Graph of a Function (2) [P3] 72

5.3.6 Tracing a Program [P4] 74

PhD-Thesis, Tobias Kohn, 2017

CONTENTS xvii

5.4 Discussion . 75

5.4.1 Computational Models in Mathematics and Programming 75

5.4.2 Students’ Model . 76

5.4.3 Threats to Validity . 78

5.5 Improving the Students’ Understanding 79

5.5.1 Related Work . 79

5.5.2 Teaching . 82

5.5.3 The Test Questions . 83

5.5.4 Results . 85

5.6 Further Evidence . 86

5.7 Conclusion . 89

6 Syntax Errors of Students in Python Programming 91

6.1 Typical Student Errors . 91

6.1.1 Misconceptions about Syntax and Semantics 93

6.1.2 Minor Syntactical Errors 97

6.1.3 Beyond Syntax Errors 99

6.2 Related Work . 102

6.2.1 Errors in Java . 102

6.2.2 Conclusion . 104

7 Parsing Python-Programs of Novice Programmers 105

7.1 Introduction . 105

7.1.1 Organization . 106

7.2 Premise . 106

7.2.1 Isolated Occurrence of Errors 108

7.2.2 Standard Python . 110

7.3 The Parsing Process . 111

7.3.1 Overview . 111

7.3.2 Structure of Python Programs 113

7.3.3 Drawbacks of this Process: Changing the Grammar . . . 115

PhD-Thesis, Tobias Kohn, 2017

xviii CONTENTS

7.4 The Lexer . 115

7.4.1 Symbol Table and Brackets 115

7.4.2 String Literals . 117

7.4.3 Operators . 118

7.5 Brackets and Parentheses . 118

7.5.1 Goals . 119

7.5.2 Combinations of Brackets and Other Tokens 120

7.5.3 Detecting Errors . 122

7.6 The Parser . 125

7.6.1 Recognizing Structural Errors 126

7.6.2 Misspelled Keywords . 128

7.7 Static Analysis . 130

7.7.1 Type System . 131

7.7.2 Discussion . 134

8 Experimental Results from Parsing Python Programs 137

8.1 Introduction . 137

8.1.1 Theses . 138

8.1.2 Organization . 138

8.2 Methodology . 138

8.3 Collected Data . 140

8.3.1 First Tier . 140

8.3.2 Second Tier . 143

8.3.3 Student’s Misunderstandings 149

8.3.4 Extra Whitespace . 152

8.4 Do Error Messages Help the Student? 154

8.4.1 Do Error Messages Help in Learning – A Survey 154

8.4.2 Related Work . 156

8.4.3 Discussion . 158

8.4.4 Conclusion . 161

8.5 Discussion . 161

PhD-Thesis, Tobias Kohn, 2017

CONTENTS xix

8.5.1 Assessing the Results . 162

8.5.2 Thesis . 163

9 Conclusions and Future Research 165

9.1 Studying the Errors of Students 165

9.2 Future Research . 167

Syntax Errors 169

Python’s Official Grammar 199

Curriculum Vitae 211

PhD-Thesis, Tobias Kohn, 2017

xx CONTENTS

PhD-Thesis, Tobias Kohn, 2017

Chapter 1

Introduction

1.1 Introduction

Making errors is an important and integral part of every learning process. By

committing errors and receiving feedback, we learn to modify and improve our

conceptions and understanding, and discern correct ideas and approaches.

As educators, we want to provide the students with the necessary feedback,

and foster them in this process of learning. But how do we give them mean-

ingful feedback? And what do we actually know about the students’ thinking,

reasoning and their conceptions of our field?

This dissertation investigates the errors students make when learning to

program in Python. We claim that some errors are due to fundamental mis-

conceptions about how programming works in general. In particular, some

high school students apply their mathematical preknowledge to programming,

even when the used concepts strongly differ from mathematics to program-

ming. However, we provide evidence that the students profit from directed

teaching that addresses such misconceptions.

On the other side of the spectrum, some errors can be attributed to simple

(syntactical) mistakes when writing a program. Such mistakes are usually

PhD-Thesis, Tobias Kohn, 2017

2 CHAPTER 1. INTRODUCTION

easily fixed, once they are spotted. If we assume that the novice programmer

making the mistake actually knows how to fix it, a simple error messages at

the correct position might suffice.

Yet, can a Python compiler do more than point out the position of simple

and obvious syntax errors? Might it even be able to recognize common er-

ror patterns, and assist us in classifying errors made by novice programmers?

Could an elaborate system, in the end, provide helpful feedback to a significant

part of students?

We claim that a Python compiler actually can recognize a large class of

error patterns that are found in novice programmers’ code. To support our

claim, we collected various errors made by our high school students, and built

a parser for Python to recognize these errors. During this process, we also

discovered some limitations to what a parser can achieve.

Research question. Assume, we want to teach an introductory program-

ming course in Python. What errors and misconceptions might the students in

our course have? What kind of feedback could the Python system give to the

students, so as to assist them in developing correct mental models of Python

programming? And what support and feedback do we, as educators, need to

provide to the students to foster their learning?

Methodology. In the course of this dissertation, we have collected Python

programs of high school students, who were learning to program, over a pe-

riod of about five years. We then searched for common error patterns in these

programs, and tried to identify the causes and sources of the errors.

The entire research is based on relatively small sample sizes. However,

our objective is to understand the errors made by the students, and find re-

lationships between the students’ thinking and their errors and mistakes. In

other words, we focus mostly on individual errors or problems, its causes and

sources, and are rarely concerned with the frequencies of their occurrence. In

PhD-Thesis, Tobias Kohn, 2017

1.1. INTRODUCTION 3

particular, this is not a statistical research study, and the evidence we provide

is more anecdotal than supported by extensive statistics.

Python

In the course of the past few years, Python has become a popular choice as

educational programming language (see, e. g., Guo [18], or Grandell et al.

[15]). At the same time, we notice that little research has been done that

specifically addresses Python. In particular, recent studies about syntax errors

and novices’ difficulties have usually been done in Java, C++, or Scheme (see

Section 6.2).

Since Python’s syntax and execution model differs greatly from the lan-

guages otherwise studied, not all results can easily be applied or translated

to Python. Moreover, current implementations of Python provide only very

crude error messages, which do not discern between different kinds of syntax

errors. This makes an analysis of the most frequent novice errors, for instance,

difficult or even impossible. As a result, we simply do not know how common

various syntax errors in Python really are.

Hence, a first step towards comprehensive research about Python in edu-

cation must be to establish a set of (syntactical) errors that are recognized by

compilers and allow reproducible and comparable results.

An Example of a Student Error

We give an example of a student program from our data set with a brief dis-

cussion of the errors contained. Even though this particular program has not

been part of this thesis’ studies, the reader gets a first-hand impression of our

methodology, and what errors might be found in a student’s program.

Consider a simple question, asking the student to write a program to solve

the following problem (slightly abbreviated and simplified): “Find all Pythagorean

quadruples (a, b, c, d), fulfilling the equation a2+b2+c2 = d2, where a, b, c ≤ 100.

PhD-Thesis, Tobias Kohn, 2017

4 CHAPTER 1. INTRODUCTION

All four numbers a, b, c, d are natural numbers. An example of such a quadruple

is (1, 2, 2, 3).”

The student’s answer. The answer of one student is given below – a pro-

gram that is clearly incorrect in various ways (note that the student wrote the

answer on a sheet of paper without access to a computer).

a = 0
repeat 100:

b = a+1
c = a+1
d = a+2
if d*d = a*a+b*b+c*c and a, b, c <= 100:

print a,b,c,d
a += 1

At first sight, the student seems to have not understood how to properly iterate

over several variables using nested loops. The three variables b, c and d are

not iterated over independently, but rather depend on the variable a. The only

quadruple this program is ever to find is (1, 2, 2, 3). This is actually the very

quadruple that was given as an example in the problem itself!

Given that the problem contained (1, 2, 2, 3) as an example, we might sur-

mise that the student took it to be a pattern for all quadruples to be found.

Thus, the student’s answer does actually not support any conclusions about

his or her ability to write a program with nested loops.

In addition to the overall algorithmic idea behind the program, there are

two syntax errors in line 6 after the if. First, a comparison needs a double

equal sign == instead of the assignment operator =. This is probably a simple

typing error. Second, the comparison a, b, c <= 100 is not syntactically

valid in Python, either. It is, again, probably taken from the problem’s question

that stated: a, b, c ≤ 100.

This last error is an example of students transferring mathematical no-

tation directly to programming. It actually seems that students only have a

«fragile» understanding of Python’s syntax, failing them in some subtler cases

(cf. [37]). They might just infer from the valid comparison a <= 100 that

PhD-Thesis, Tobias Kohn, 2017

1.2. THESES AND CONTRIBUTIONS 5

a, b, c <= 100 is close enough to be valid as well.

Conclusion from the example. The upshot of this example is that students’

errors have various different causes. Not all errors truly reveal a misconcep-

tion or inability of the student. The incorrectness of the above program, for

instance, is more likely the cause of a misunderstanding of the problem asked.

On the other hand, even mere syntax errors can have different causes.

Whereas some syntax errors are in actuality just simple mistakes and typing

errors, other errors reveal misconceptions about Python’s syntax. In some

cases, the novice programmer might just not know how to correctly implement

his or her plan.

When designing a Python environment to provide feedback to the novice

programmer, the biggest challenge we face is that each student might require

another type of error message, so as to be helpful to him or her. If, for in-

stance, the student, in the example above, knows that a comparison is written

with a double equal sign, a minimalistic error message at the correct position

will suffice. In contrast, in the case of the comparison a, b, c ≤ 100, the error

message might have to be much more tailored to the problem at hand to be of

any help at all. Just telling the student that the comma after the a is invalid

might imply to the student that Python uses a different separator symbol, e. g.,

a semicolon. Even with a corrected syntax, i. e., (a, b, c) <= 100, the com-

parison is still invalid. Accordingly, the error message should be careful not to

suggest a putative solution that turns out to be incorrect as well.

1.2 Theses and Contributions

We propose three theses, for which we will provide supporting evidence in the

course of this dissertation. Due to the nature of the theses, we cannot prove

them in a strict sense. Instead, we present concrete artifacts from students’

programs, possible interpretations of these artifacts, and eventually show that

PhD-Thesis, Tobias Kohn, 2017

6 CHAPTER 1. INTRODUCTION

our claims are consistent with previous research.

Thesis 1. Some common misconceptions and errors made by novice pro-

gramming students can be explained as the students applying a mathematical

model of syntactical substitution to program execution.

Thesis 2. It is possible to directly improve the students’ understanding and

cognitive concept of variables, and the computational model through explicit

teaching.

Thesis 3. The parser can correctly identify and report at least 75 % of syntax

errors that are made by high school novice programmers in Python.

Contributions

TigerJython. As part of this dissertation, the author has written an educa-

tional development environment for Python programming, called TigerJython.

In the context of the dissertation, we particularly focus on the parser, that has

become part of this environment (Chapter 7).

TigerJython builds on Jython [29], a Python implementation that runs on

the Java platform. On top of Jython, we use a customized parser as described

in Chapter 7. It also includes a debugger and visualizing system, inspired by

Philip Guo’s Python Tutor [19], and provides a simple student-oriented inter-

face. TigerJython has been freely available under [30]. More details are given

in Chapter 2.

This dedicated Python environment allowed us to try different ideas for

the parser directly in class, and hence gain experience from classroom use.

The programs collected for our study in Chapter 8 have also been collected

through TigerJython.

Apart from its direct use as part of the dissertation, TigerJython has found

widespread use, particularly in Switzerland and Germany. The website analyt-

PhD-Thesis, Tobias Kohn, 2017

1.2. THESES AND CONTRIBUTIONS 7

Figure 1.1: A screenshot of the educational Python environment TigerJython.

The program is currently running, and the debugger, inspired by P. Guo’s

Python Tutor, shows on the right.

ics for [30], as presented in Fig. 1.2, show downloads of more than 3000 copies

of TigerJython during August 2016 (after the summer holidays). Some high

schools, however, have installed a single copy of TigerJython to be used by the

entire school. The real number of actual users is thus difficult to estimate. Yet,

the statistics in Fig. 1.2 also shows how often an instance of TigerJython asks

the server whether an update is available. This gives a conservative estimate

of more than 750 users each weekday.

In Switzerland, the programming environment TigerJython spawned a project

comprising several tutorials and workshops, most notably the extensive online

tutorial “Programming Concepts” [3]. While this project is clearly not part

of the dissertation, its use of the TigerJython-environment can be seen as ad-

ditional proof of concept for the idea of an educational Python environment.

PhD-Thesis, Tobias Kohn, 2017

8 CHAPTER 1. INTRODUCTION

Aug Sep Oct Nov

Application downloads 3 484 1 492 794 1 379

Checking for updates 10 631 17 670 8 377 16 242

Figure 1.2: Download statistics for TigerJython during four months in 2016.

Note that the drop in October is probably due to about two weeks of Swiss

national holidays.

The TigerJython-tutorial received multiple funds and has been translated from

German to English and French.

The environment TigerJython has also been used as the basis for a sec-

ond Python environment JEM (Jython Environment for Music) [40], aimed

at teaching Python programming by making music. This teaching program

and Python environment has been presented at two workshops titled “Mak-

ing Music with Computers: Creative Programming in Python”, being held at

SIGCSE technical symposiums 2015 and 2016 in Kansas City and Memphis,

respectively.

Finally, TigerJython is also used in the WEKA-suite for Data Mining and

Machine Learning of the university of Waikato, New Zealand [51].

Concepts of variables. The contents of Chapters 4 and 5 are to be published

at the upcoming SIGCSE technical symposium 2017 in Seattle. The paper

“Variable Evaluation: An Exploration of Novice Programmers’ Understanding and

Common Misconceptions” by the author of this dissertation has been accepted,

and will be presented in March 2017 at the conference.

Classification of errors. Current implementations of Python provide only

simple error messages and do not (or only in a very limited fashion) discern

between various kinds of syntax errors. In order to study the errors made by

novice programmers, for instance, we require more precise error messages. In

particular, a statistical study is hardly possible without automated assessment

PhD-Thesis, Tobias Kohn, 2017

1.3. ORGANIZATION OF THE DISSERTATION 9

of the objects to study (in this case the errors).

With our classification of syntax errors in Python we provide a basis for

such studies. Moreover, the parser presented in this dissertation is an already

working implementation.

1.3 Organization of the Dissertation

The development environment TigerJython is briefly presented in Chapter 2.

Chapter 3 provides an overview of Python’s features and grammar. We

focus on those aspects of Python which are most relevant for the dissertation,

in particular the parser (Chapter 7). Appendix 9.2 contains a complete copy

of Python’s grammar.

Chapters 4 and 5 discuss the concepts of variables in mathematics and

programming. We argue that some students apply the mathematical model to

programming, resulting in misconceptions about how programming actually

works. In particular, we discuss Theses 1 and 2.

Chapters 6, 7, and 8 present the errors we have collected from our students’

programs, as well as the parser we have built. This part also contains an

analysis of the parser’s performance concerning error recognition, as well as a

discussion of Thesis 3.

Appendix 9.2 gives a complete list of all the errors our parser can currently

recognize.

PhD-Thesis, Tobias Kohn, 2017

10 CHAPTER 1. INTRODUCTION

PhD-Thesis, Tobias Kohn, 2017

Chapter 2

The Educational

Python-Environment

TigerJython

2.1 Introduction

As part of this dissertation, we have written a development environment for

Python programming. This environment is called TigerJython and addresses

specifically novice programmers, in particular (high school) students. While

the remainder of this dissertation focuses on an essential aspect of Tiger-

Jython, namely the parser, this section provides a more comprehensive overview

of the development environment, and the rationales behind its design.

Assisting the novice programmer through software. According to du Boulay,

programming novices face five major areas of difficulties when learning to pro-

gram [13]:

PhD-Thesis, Tobias Kohn, 2017

12 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

1. Goals and Objectives. What is programming for, and what problems

can be solved through programming?

2. The Notional Machine. What are the properties, capabilities and limi-

tations of the machine that executes the program?

3. Syntax and Semantics. Which rules and basic vocabulary build up the

programming language?

4. Plans and Structures. How are the words of the programming language

used to express ideas, plans, and algorithms?

5. Pragmatics and Tools. How is a program entered into the computer,

executed, and how does it interact with its environment?

Different approaches to computer science education address one or more of

these five areas of difficulties. For instance, Turtle graphics presents the stu-

dent with a very simple notional machine, and the programming language

“Logo” reduces the syntactic overhead to a minimum. More recent approaches

such as “Scratch” try to eliminate the difficulty of syntax altogether through a

block-based programming language.

Where programming language and machine are given, new environments

are created, primarily addressing the area of pragmatics and tools in du Boulay’s

list. These environments work with an existing programming language, and

strive to make it more accessible to the novice user. “BlueJ” and “Greenfoot”

(see, e. g., [32] and [33]), for example, offer an easier access to Java and ob-

ject oriented programming. An advantage of such educational environments is

that they are not limited to assisting the student in learning the correct syntax

and semantics, but also make the underlying notional machine more accessi-

ble. This can be done, for instance, by the means of a debugger or improved

compiler messages.

TigerJython is such an education environment for Python programming.

Its main characteristics are more detailed error messages in case of syntax

PhD-Thesis, Tobias Kohn, 2017

2.1. INTRODUCTION 13

errors, and a debugger that exposes the internal state of the machine while

a program is being executed. Moreover, it also includes a set of educational

libraries, for instance the above mentioned Turtle graphics.

Design goals. The development environment TigerJython has been required

to, and fulfills the following list of design goals. Apart from a focus on didac-

tical considerations, it has always been important to reduce technical hurdles

to a minimum.

• The environment must have an intuitive and simple interface. In par-

ticular, after starting, students must immediately be presented with an

editor window to start typing their program code. Executing a program

must be just as intuitive and simple.

In contrast, Python’s standard editor “IDLE” requires the user to explic-

itly create a new file first, and save its contents, in order to execute the

program. Most professional environments typically start by creating a

project.

• The environment must be available on a wide range of systems. In par-

ticular, it must run without installation, so that it can be used on systems

where the user has restricted rights, and cannot install new software (as,

for instance, on a computer system provided by the school or institution).

It must also run on different operating systems and platforms.

• All necessary libraries, in particular the needed graphical libraries, must

be included. A typical user should not be required to download or install

any additional libraries. At the same time, using external and additional

libraries must still be supported.

• A debugger allows the student to execute the program stepwise line by

line, and inspect the machine’s state at any time. The machine’s state

needs to be visualized in an accurate and accessible way.

PhD-Thesis, Tobias Kohn, 2017

14 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

An important aspect of the debugger is that it follows the idea of the

“notional machine”. In order to run a Python program, the internal reg-

isters of the CPU, for instance, are not important because they are not

accessible from, or part of the Python language.

• In case of (syntax) errors, the system reports intelligible error messages.

On one hand, this is to say that the error messages are to report the

actual problem as precisely as possible. On the other hand, TigerJython

offers its error messages in English and German – the latter being the

native language of our student population.

2.2 Building Upon Classroom Experience

2.2.1 Input and Output

Python’s interactive console. Python provides an interactive console/ter-

minal (also known as “REPL”), which allows the user to enter Python code,

and thereby evaluate expressions, and execute statements. The environment

included with standard Python is called “IDLE” and shown in Fig. 2.1. For

Figure 2.1: A screenshot of the interactive console “IDLE”, that is included

with standard Python.

the subsequent discussion, it is important to note, that IDLE integrates user

PhD-Thesis, Tobias Kohn, 2017

2.2. BUILDING UPON CLASSROOM EXPERIENCE 15

input and output into the interactive console. As can be seen in the screenshot

in Fig. 2.1, the console does not show any difference between evaluating the

expression 2*3 and executing the statement print 2*3. Moreover, even the

input()-function takes its input from the interactive console. In this setting,

the advantages of using input() instead of assigning a value directly to a

variable remains somewhat obscure.

Print versus return. Our students exhibited difficulties understanding the

concept of the return statement. On first sight, indeed, the return-statement

shares a main characteristic with print: to “return” the result of a computa-

tion. Consider, for instance, the following two examples:

def sqr(x):
return x*x

print sqr(12)

def sqr(x):
print x*x

print sqr(12)

The output of both programs is almost identical. In the case of print on

the right, Python prints an additional None, which is simply ignored by the

students.

When either of the sqr(x)-functions above are invoked from the inter-

active console/terminal, the output is exactly the same, and no difference is

visible at all. It is understandable, then, that students have difficulties under-

standing why they should use return instead of print – especially given that

in a program (as contrasted to the terminal), return does not produce any

visible output.

In order to help students discern between print and return, we intro-

duced a dedicated output window for all “printed” output. While values di-

rectly evaluated appear in the console, and can be used for subsequent com-

putations, printed values do not appear inside the console, and have no effect

on further comutations. This can be seen in Fig. 2.2.

PhD-Thesis, Tobias Kohn, 2017

16 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

Figure 2.2: The interactive console as it is included in TigerJython. Note how

the output of the first statement is to be found in the dedicated output window

at the bottom, and how input is done through a small dialog window.

Visible and invisible results. Another aspect of this is that Python does not

automatically print evaluated expressions when running a program – there an

explicit print is required. Consider, for instance, the expression statement

2*3. Inside the console, it is evaluated, and the result 6 is shown in the con-

sole. Inside a program, however, the result of the expression is not printed,

and hence does not appear anywhere to be seen.

Input. When using the input()-function in standard Python, students fre-

quently asked the teacher for assistance because their programs seemingly

stopped working. Indeed, apart from printing a possible prompt, Python does

not give any clue that user input is expected (see Fig. 2.3).

To make requested user input clearly visible to the user, TigerJython uses

small dialog boxes for all user input (see Fig. 2.2). This has the additional

benefit that students clearly see an effect when using an input()-function,

and understand the difference to putting constant values into the program

code.

In Python 2, the input()-function interpretes the given input as a Python

expression, and attempts to evaluate it. As long as the user enters numbers,

PhD-Thesis, Tobias Kohn, 2017

2.2. BUILDING UPON CLASSROOM EXPERIENCE 17

Figure 2.3: There is hardly any indication that the Python program shown in

the small window is currently running, awaiting user input (due to an error in

Python, not even the prompt is showing correctly).

this comes in very handy, as the returned values of input() are, indeed, the

numeric values of the entered numbers. In case of string values, however, the

user is confronted with a “NameError” as seen in Fig. 2.4.

As an alternative, Python offers the function raw_input(), which always

returns the entered text as a string value. In this case, the user can safely enter

names, say, but numbers are then also returned as strings, and not as numeric

values.

TigerJython uses a different concept for the input()-function. All num-

bers are returned as numeric values (either integer or floating point values).

Everything else is returned as a literal string value (see also Section 3.5).

2.2.2 Location of Error Messages

Quite some work has been done considering the question of what informa-

tion an error message should contain, and how that information should be

presented (see, e. g., Becker [5], Denny et al. [11], Marceau et al. [41], Nien-

PhD-Thesis, Tobias Kohn, 2017

18 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

Figure 2.4: In Python 2, the input function evaluates its input as a Python

expression. In case of an entered “name”, it is interpreted as the name of

variable, leading to an error.

altowski et al. [45]). However, the placement and presentation of the error

message itself is of some importance as well.

Our experience with IDLE. IDLE shows syntax errors in the editor window

by marking the offending line in red, and by displaying a small dialog window

with the error message, that must be closed before editing the Python pro-

gram. Runtime errors are shown in the interactive console, usually as “Trace-

back” exposing the call stack (see Fig. 2.5). In classroom we observed three

points about IDLE’s way of displaying errors.

• Students tended to overlook the runtime errors shown in the console.

In particular, it seems that these messages were not directly regarded

as helpful information about the error in the program, but rather as

some technical details with no further significance. In case of a problem,

students usually concentrated on the editor window with the program

code.

• In case of the dialog window, students closed it before reading its con-

tents, and then, again, concentrated on the program code in the editor.

PhD-Thesis, Tobias Kohn, 2017

2.2. BUILDING UPON CLASSROOM EXPERIENCE 19

Figure 2.5: Python’s environment “IDLE” displays runtime error messages in-

side the console (on the left), and compile time errors (i. e. syntax errors) in a

small dialog window (on the right).

• Many students reported that they would not read the error messages be-

cause the messages were in English (our students were native German

speakers). In fact, most error messages are even given in a technical

English, and many students might not understand what “no viable alter-

native” or “syntax error” actually means.

Designing better ways to display error messages. TigerJython’s way of

displaying errors has been based on the experience with IDLE. Moreover, this

way has changed as we gained further experience with TigerJython itself. Our

goal has been to design error messages that are seen, read, and understood by

students without a lengthy introduction to error messages and their meaning.

We found that error messages have to be placed directly into the editor, so

as not to be overlooked by the students. Dialog windows forcing the students

to confirm the error message did not work as expected. The main problem

arose when students needed further assistance from a teacher. In these cases,

they asked for help after having closed the window, and thus eliminating all

PhD-Thesis, Tobias Kohn, 2017

20 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

information about the error. Hence, the error messages need to remain acces-

sible until at least the next run of the program. This led to a design where

error messages are both shown directly inside the editor, as well as recorded

in a dedicated window at the bottom (see Fig. 2.6).

Figure 2.6: Errors in TigerJython are displayed directly inside the editor, as

well as in an error window at the bottom.

In order to make error messages more intelligible to the students, we trans-

lated most messages to German. In this process, we also enhanced the error

messages by adding additional explanations and information. This enhance-

ment, however, proved to be detrimental in most cases. Students were unlikely

to read longer messages. This is also confirmed by a study of Nienaltowski et

al. [45]: “Giving a lot of information in an error message does not necessarily

help students get the correct answer.” Accordingly, we subsequently simplified

the error messages: TigerJython now displays rather concise messages.

We conducted a survey among the students, assessing the benefits of Tiger-

Jython and its error messages. The survey is discussed in Section 8.4. Most

PhD-Thesis, Tobias Kohn, 2017

2.3. JYTHON 21

notably, students reported that the German translations of the error messages

were, indeed, helpful.

2.3 Jython

Jython [29] is an implementation of the Python language that runs on the

Java Virtual Machine. At the time of writing the current version supports

Python 2.7. Jython’s main strength is its interface between Python and Java.

This allows, in particular, for Python programs to fully interact with, and lever-

age the power of, Java libraries.

From a technical point of view, using Jython allows us to create a single

executable Java file, containing all necessary libraries and dependencies. Ac-

cordingly, TigerJython does not require any external software apart from a

Java Runtime Environment, and runs on various platforms without installa-

tion.

Benefits of using Jython. Jython is a well tested and complete implementa-

tion of Python. Using Jython as the underlying system means that TigerJython

is not a “toy system” reduced to a few educational examples, but offers (al-

most) the entire range of Python’s possibilities.

Due to Jython’s interface to Java, we have been able to reuse libraries

originally written for Java. With very little porting effort and overhead, such

libraries could be made available to the students. The Turtle graphics library

used in TigerJython, for instance, was originally written for programming in

Java.

Interaction of Python and Java. There are some minor differences between

standard Python and Jython, due to the fact that Jython interacts with the Java

Virtual Machine. These differences include the import or modules, packages

and classes, function overloading, or using unicode characters in string values.

PhD-Thesis, Tobias Kohn, 2017

22 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

We found, that some of these differences gave rise to problems, as documented

below.

In fact, the correct handling of unicode characters in strings has proven to

be particularly problematic. A string returned from Java to Python can cause

an exception because of non-ASCII-characters contained within.

A Python program executed in Jython has full access to Java. This has two

profound implications regarding the notional machine. First, the machine’s

state is no longer exclusively determined by values (directly) accessible to

Python. Java methods can manipulate the state of the underlying Java Vir-

tual Machine. Second, a Python program might spawn new threads, which

continue to run even after the Python script itself has finished. This is particu-

larly visible, for instance, when a Python program opens a graphical window.

Jython might then report that the Python program has terminated, yet the win-

dow remains fully active, and can even call functions from within the Python

script.

2.3.1 Controlling Program Execution in Jython

Stopping programs. Jython supports a “trace callback” function: we can

register a function to be invoked before each line of Python code is executed.

This trace callback provides the basis for stopping a program, as well as for

executing a program line by line.

Inside the graphical user interface, the user is given the possibility to stop

and abort the execution of a Python program. Jython, however, does not di-

rectly provide a way to stop a Python program. However, by throwing an

exception, the trace callback can cause a program to terminate immediately

– unless, of course, the currently running part of the Python program is en-

closed in a try-except-block. Due to the design of this mechanism, a program

is actually stopped at the beginning of the next line to be executed. If the cur-

rent statement, however, invokes a Java method, Jython has to wait until that

method has terminated before the program can be aborted. This applies, in

PhD-Thesis, Tobias Kohn, 2017

2.3. JYTHON 23

particular, to sleep()- and input()-functions, which both delay the continu-

ation of program execution.

Unfortunately, the technique for stopping the program does not work in

case of other threads accessing the Python script. Consider the following

Python program to be run in TigerJython.

from gturtle import *

@onMouseClicked
def mouseClicked(x, y):

while True:
pass

makeTurtle()

The program registers a callback function mouseClicked, and then opens up

a window. After the last statement makeTurtle(), Jython reports that the

program has terminated, even though the window is still open and active.

When the user clicks into the window, the callback function from this Script is

still executed. This is even done in Java’s “Event Dispatch Thread”, responsible

for all user interface related actions. In other words, this program effectively

blocks the entire user interface.

The trace callback is actually invoked only as long as the Python program

is run by the “main executing thread”. Even if the call to mouseClicked was

not performed by Java’s “Event Dispatch Thread”, Jython is not aware that the

function’s code is executed at all. Hence, the development environment has

no way to react.

Debugging and stepwise execution. The trace callback described above is

also used in order to update the debugger, and to execute the program step

by step. Delaying or pausing a program is achieved by a loop inside the trace

callback. After the user has asked the program to pause, the trace callback

delays further execution of the program until the user has given the command

to continue.

PhD-Thesis, Tobias Kohn, 2017

24 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

Moving forward and back. In his “Online Python Tutor” [19], Philip Guo

offers the possibility to not only execute and trace a program step by step, but

also to move forward and back in the program execution. This is achieved by

prior execution of the entire program, where, after each step, the machine’s

state is recorded. What the user then perceives as execution of the program,

is actually just moving through the list of previously recorded machine states.

Guo’s Online Python Tutor is restricted to a maximum of 300 steps.

In case of TigerJython, such an implementation proved to be virtually im-

possible. Recoding the machine’s state so as to allow moving a step back

imposes two essential restrictions onto the programs at hand. First, it must be

possible to completely capture the machine’s state. Second, the program can-

not interact with the user. As already mentioned above, a Python program in

Jython might interact with the entire Java environment. This includes the pos-

sibility to create and open graphical windows, or to interact with yet unknown

libraries. Capturing the entire state of the machine is impossible under these

circumstances. In addition, even simple functions such as input() become

problematic, again strongly restricting the possibilities of the environment.

Because of these severe limitations, TigerJython does not offer an option

to move backwards in program execution.

2.3.2 Changes to Jython

Out of educational reasons, we have made some changes to Jython. From

a technical point of view, the changes to the programming language (most

notably, the introduction of a repeat-loop) are achieved by a preprocessor.

Additionaly, we changed input- and output-behaviour, and added some func-

tions to be available directly without any imports. More explicitely:

• TigerJython has a repeat-loop to repeat a code sequence for a given

number of iterations.

• While Python uses the ^-operator for logical exclusive or (xor), the op-

PhD-Thesis, Tobias Kohn, 2017

2.4. DEBUGGER 25

erator has often become to denote power, i. e. a^b stands for ab. The

software package “SageMath” [57] is based on Python, but redefined

the ^-operator to denote the power-operator, and ^^ for exclusive or.

TigerJython supports this semantical change of ^ as an option as well.

• The input()-function always prompts the user for input using a small

dialog window. At the same time, the input is not evaluated as Python

expression. However, numbers are returned as numeric values. In ad-

dition, the functions inputInt() and inputFloat() are extensions of

input() requesting an integer, or any number, respectively.

• Additional standard functions have been defined. These include, most

notably, msgDlg() to display a text message in a small Dialog window,

makeColor() to create colors for Turtle or any other Java-based graph-

ics, and playTone() to play sounds and musical tunes.

• Since the standard Turtle-module of Python is not available in Jython,

we replaced it by an extended Turtle-module, based on a Java-library by

A. Plüss [48].

Further details about the repeat-loop, as well as input are given in Sec-

tion 3.5.

2.4 Debugger

In an educational environment, a debugger’s primary purpose is not necessar-

ily as a means to find and correct errors. Rather, a debugger can be used in

order to visualize a machine’s state and the flow of code and data during pro-

gram execution. The debugger of TigerJython has been built with this purpose

in mind.

PhD-Thesis, Tobias Kohn, 2017

26 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

2.4.1 Variables and Types in Python

This section provides only a limited overview. A more detailed discussion of

how Python handles variables and types can be found in Section 3.3.

Variables, types and immutability. Python is dynamically and strongly typed.

That is to say, Python’s variables are untyped, while the values carry a fixed

type. In other words: the type of a variable can change any time, but the

type of a value never changes. As seen from the Java-side of Jython, we can

consider each variable as having a generic type PyObject. The variable’s

values are then specific subclasses of PyObject, such as, e. g., PyString or

PyInteger.

Many values in Python are actually immutable, and thus cannot change.

Let’s consider, e. g., a variable x with the integer value of 3. This is to say, that

x is a reference to an “integer object” carrying the value 3 (in Jython, the object

is of type PyInteger). The Python code x += 1 might then be expected

to increment the object’s value by 1. However, this is not the case. Rather,

Python creates a new integer object with the value 4 and has x reference that

new object.

The difference between mutable and immutable types becomes apparent in

the case of parameters. The two following programs illustrate this point with

an immutable integer type on the left, and a mutable list type on the right. In

the case of the integer type, the program will print “3”, since the statement

p += 1 causes the parameter p to reference a new object. In the case of the

list type, however, the program will print “[3, 1]”. In this case, it is not the

variable (reference) p that has changed, but rather the underlying list object

itself.

def foo(p):
p += 1 # p refers to

x = 3 # new value
foo(x)
print x

def foo(p):
p.append(1) # p’s value

x = [3] # changed
foo(x)
print x

PhD-Thesis, Tobias Kohn, 2017

2.4. DEBUGGER 27

In Python, each variable is a reference to an object. In case of assignments,

it is the reference that is copied, not the object itself. However, when talking

about immutable types, there is no discernable difference between using a

“primitive” type (i. e. the variable carrying the value itself), and referencing

the object. For educational purposes, we can simplify the model of references

and objects, and instead think of x += 1 as directly increasing the value of

the variable.

Scope and frames. Each module and function is executed in the context of

a “frame”. Most importantly, a frame holds a dictionary (table), assigning to

each name or variable its proper value object. This dictionary or table is called

the “locals” dictionary, referring to the fact that it holds “local variables”.

With each invocation of a function, a new frame is created. The new

frame has a reference to the current frame, and starts out with a locals dic-

tionary containing the function’s parameters together with their values (the

arguments). An assignment to a variable creates, or replaces an entry in the

current frame’s locals dictionary.

Differences in Jython. Since Jython runs on the Java Virtual Machine, and

strives for compatibility with Java, there are some differences between stan-

dard Python and Jython.

Jython usually performs automatic type casts between most Python and

Java types. When calling a Java method, for instance, requiring two floating

point values as parameters, and returning a string value, Jython converts both

the parameters from Python to Java types, as well as the result returned by

the method from Java to Python.

Even though the use of Java types is typically transparent to the Python

programmer in Jython, Jython internally distinguishes between Python and

Java types. When designing a debugger, we must take care to correctly take

into account the additional wealth of types, stemming from the interaction be-

tween Java and Python. For instance, methods and functions can behave quite

PhD-Thesis, Tobias Kohn, 2017

28 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

differently: not only does Java clearly distinguish between static and virtual

methods (but has no proper functions), it also supports function overloading.

That is, in Java, a function can have different implementations, discerned by

the parameters used to invoke them. In Python, these methods must be repre-

sented by a single function, that will invoke the correct method when called.

2.4.2 Displaying Frames and Variables

The design of the debugger’s display of variables and names includes a trade

off. Adhering to Python’s concept of variables as references would impose

complex graphs of objects and their relationships. At the same time, the de-

bugger must capture essential features of Python’s notional machine to be

useful in an educational setting.

Figure 2.7 shows TigerJython’s debugger during the execution of a (trivial)

program. Only the list my_list is a mutable object, and thus displayed as a

true object, with the variable my_list being a reference to the object. The

tuple t, even though also a compound object, is shown as a “value” rather

than an object, emphasizing that its value cannot be changed.

The debugger has two columns. The left column shows the frames, the

right column additional objects. The current and active frame is alwas placed

on top, as seen in Figure 2.8.

Importing modules might result in a huge list of available names, render-

ing it very difficult to find those variables which actually play a role in the pro-

gram. TigerJython therefore filters the names, and shows only those names

which are actually used in the program. This can be seen in Figure 2.8, where

only the three functions forward(), left() and makeTurtle() are shown in

the module’s frame (even though, in actuality, all turtle functions have been

imported).

Extended information. For a few selected data types, the debugger shows

additional information whenever the mouse hovers on top of the respective

PhD-Thesis, Tobias Kohn, 2017

2.4. DEBUGGER 29

Figure 2.7: The debugger on the right displaying different data types. Note,

in particular, the difference between the immutable “Tuple”-type, and the

mutable “List”-type. In addition, when the mouse hovers over one of the

values, additional information is shown (on the right bottom).

value. The selection of such extended information is primarily based on di-

dactical considerations.

For example, even though Python does not have a data type for characters,

the debugger recognizes strings of length 1, and not only displays the actual

character, but also the corresponding character (ASCII) code, both decimal

and hexadecimal. This is intended to help with programs that rely on each

character having a certain integer code, such as the Caesar cipher.

Another example of extended information is shown in Figure 2.9. The

debugger does not only display the name and the hexadecimal value of a color

value, but also its decomposition into the three basic colors red, green, and

blue. This is intended to help students experiment with, and understand, how

colors are represented by a computer.

PhD-Thesis, Tobias Kohn, 2017

30 CHAPTER 2. THE EDUCATIONAL PYTHON-ENVIRONMENT TIGERJYTHON

Figure 2.8: The debugger (on the right) during program execution. As pro-

gram flow is currently inside the “spiral”-function, there are two frames: the

upper one representing the function, the lower one being the global frame for

the entire module. Note that only functions and values are displayed, which

are actually used in the Python program.

Figure 2.9: For color values, the debugger shows the composition of red, green

and blue.

PhD-Thesis, Tobias Kohn, 2017

Chapter 3

The Python Programming

Language

3.1 Introduction

This dissertation is based on the programming language Python. As the reader

might not be familiar with Python, this section provides an overview and intro-

duction as needed for the rest of the thesis. This overview cannot be exhaus-

tive, of course. The interested reader will find more comprehensive discussions

in the official documentation [50, 53].

We assume that the reader has a general understanding of imperative pro-

gramming, although not necessarily in Python. Hence, the reader should be

familiar with concepts such as variables, data types, functions, statements,

loops, conditionals, etc.

There are currently two versions of Python in use: Python 2 and Python 3.

The two versions are not fully compatible, but differ, among other things,

in syntactical details and the included standard libraries. This thesis uses

Python 2 as its basis, more precisely in the distribution Jython, which runs

Python 2.7 on the Java platform [29].

PhD-Thesis, Tobias Kohn, 2017

32 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

Changes to Python. The Python environment TigerJython, that has been de-

veloped along this thesis, introduces some changes to standard Python. They

are documented in section 3.5.

Most notable, we have added a repeat-statement to provide the novice

programmer with a loop that does not require variables. The other changes

primarily concern built-in functions such as input.

3.1.1 A Short Summary of Python’s Basic Features

• Statements are separated by line breaks. However, inside parentheses

and brackets, line breaks are ignored. Semicolons can be used to sepa-

rate simple statements, with the effect that semicolons at the end of a

line are usually ignored.

• Code blocks (i. e., the bodies of functions, loops, etc.) are marked by

indentation. An indented code block is always preceded by a colon at

the end of a compound-statement’s header (e. g., if x > 0:).

• Functions are defined with the keyword def and always return a value.

If no value is specified by using a return-statement, the function re-

turns None (which roughly corresponds to “void”, “null”, etc. in other

languages).

In order to call/invoke a function, parentheses are always needed, even

when no arguments are given. A function’s name without parentheses

refers to the function as an object.

• Python is dynamically and strongly typed: variables carry no type in-

formation, while all values have a fixed type. In addition, Python is

object-oriented: all values are objects, and variables are of generic type

“object”.

Accordingly, variables require no declaration. A new variable is created

when a value is assigned to it.

PhD-Thesis, Tobias Kohn, 2017

3.1. INTRODUCTION 33

• Strings can be enclosed in single or double quotes: ’abc’ and "abc" are

equivalent. There is no “char”-type for strings of length 1. Strings that

begin and end with three consecutive quotation marks can span multiple

lines.

• Integers can have arbitrary size, hence Python’s int corresponds to “Big-

Integer” in other languages and systems.

• Python makes heavy use of tuples, e. g., in order to swap the values

of two variables: (a, b) = (b, a) . Tuples are also used to return

multiple values from a function, e. g., return (1, 2, ’abc’) .

• Comments start with the hash-character # and run until the end of the

line.

3.1.2 Python’s Terminology

Lines Python’s syntax allows for multiple physical lines to be connected to

a single logical line. For instance, line break tokens are ignored within

parentheses and brackets, so that the definition of a list, for instance,

can run over several physical lines and still only count as one logical line

in Python.

Statements Python distinguishes between simple and compound statements.

Compound statements include other statements as part of their body. Ex-

amples are loops, functions, etc.

Simple statements are a sequence of small statements, separated by

semicolons. An example for a simple statement is x = 3; print x ,

comprising an assignment and a print-statement. Simple statements

with more than one small statement are rather uncommon in Python

and the semicolon is rarely used.

Suite A block of code, as part of compound statement, is called a suite. Hence,

the while-loop would be defined as:

PhD-Thesis, Tobias Kohn, 2017

34 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

〈while_stmt〉 ::= ‘while’ 〈expression〉 ‘:’ 〈suite〉

The suite is either a simple statement (possibly comprising several small

statements) or an indented block of code, following the while-clause on

the next line.

Names Identifiers are often called names in Python.

Expressions While expression usually refers to an arithmetic expression, a

test can either be an arithmetic expression, a comparison, or even a

conditional expression.

3.2 Examples of Python Programs

This section contains five examples to illustrate the use of Python.

Drawing a square with the turtle. This first example shows how to draw a

simple square using the turtle. A program like this can usually be written by a

high school novice programmer within the first two hours of the course. Both

the gturtle-module as well as the repeat-loop are additions of “TigerJython”

not found in standard Python.

from gturtle import *

def square():
repeat 4:

forward(100)
left(90)

makeTurtle()
square()

Using tuples. This tiny example shows how tuples can be used to return

multiple values from a function. Also note how the entire if-statement in

line 2 is on one line. The suite – in this case just a return-statement – may be

just a simple statement following the colon instead of an indented block.

PhD-Thesis, Tobias Kohn, 2017

3.2. EXAMPLES OF PYTHON PROGRAMS 35

def mini_sort(a, b):
if a > b: return b, a
return a, b

minValue, maxValue = mini_sort(12, 34)

Random walk with the turtle. Using the pseudo-random generator, we can

have the turtle perform a random walk. In our case, the turtle is restricted to

a circle of 200 pixels around the screen’s center.

Note the different ways to import a module. While each of the four mod-

ules (including the math-module) is loaded only once, the imports differ in

how the names are imported into the current namespace, as can be seen by

the use of math.sqrt, time.sleep and random.randint, respectively.

from gturtle import *
from random import randint
import time

def distance(x, y):
import math
return math.sqrt(x**2 + y**2)

makeTurtle()
hideTurtle()
repeat 100:

left(randint(0, 360))
forward(20)
dot(8)
if distance(getX(), getY()) > 200:

dot(10)
heading(towards(0, 0))
forward(20)

time.sleep(0.1)

A “Brainfuck”-interpreter. Brainfuck is a minimalistic programming lan-

guage, comprising only eight symbols (<>+-[].,) [59]. Similar to a Turing

machine, it operates on an (infinitely large) tape of cells. The following Python

program is an interpreter for the Brainfuck programming language, however,

PhD-Thesis, Tobias Kohn, 2017

36 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

without the input-function. It interprets the Brainfuck program given in the

string below and prints the “Hello World”-message.

In order to modify the global variable index from within a function, the

variable has to be declared as global. This is not necessary for the list cells

since the program does not change the variable cells but rather the refer-

enced list itself (cf. Section 3.3).

Another peculiarity of Python is that, for any sequence s, s[-1] returns

the last element of the sequence.

cells = [0] * 30000 # Our "tape"
index = 0 # The index to the current cell
stack = [] # An empty list

def move_index(c):
global index
index += 1 if c == ’>’ else -1

def change_cell(c):
while index >= len(cells):

cells.append(0)
cells[index] += value

def interpret(text):
i = 0
while i < len(text):

ch = text[i]
i += 1
if ch in [’<’, ’>’]:

move_index(ch)
elif ch in [’+’, ’-’]:

change_cell(int(ch + "1"))
elif ch == ’.’:

print chr(cells[index]),
elif ch == ’[’:

stack.append(i)
elif ch == ’]’:

if cells[index] != 0:
i = stack[-1]

else:
stack.pop()

PhD-Thesis, Tobias Kohn, 2017

3.2. EXAMPLES OF PYTHON PROGRAMS 37

input_text = """
>+++++++++[<++++++++>-]<.>+++++++[<++++>-]
<+.+++++++..+++.>>>++++++++[<++++>-]<.>>>
++++++++++[<+++++++++>-]<---.<<<<.+++.
------.--------.>>+.

"""
interpret(input_text)

Gaussian elimination. This example follows as closely as possible a Pascal

program given by N. Wirth in [61]. It uses Gaussian elimination to solve the

system: 
1 2 5

3 1 4

−2 5 9

 · ~x =


4

11

−7


Note that a for-loop in Python always iterates over the elements of a sequence

(e. g., a list, a string or a tuple). The range-function returns a list of successive

integer values. Hence, range(4) is equivalent to the list [0, 1, 2, 3] and

range(3, 7) to the list [3, 4, 5, 6].

n = 3
A = [[1, 2, 5], [3, 1, 4], [-2, 5, 9]]
B = [4, 11, -7]

for k in range(n):
p = 1.0 / A[k][k]
for j in range(k, n):

A[k][j] = p * A[k][j]
B[k] = p * B[k]
for i in range(k+1, n):

for j in range(k+1, n):
A[i][j] = A[i][j] - A[i][k] * A[k][j]

B[i] = B[i] - A[i][k] * B[k]

k = n-1
X = [0 for i in range(n)]
while k >= 0:

t = B[k]
for j in range(k+1, n):

t = t - A[k][j] * X[j]

PhD-Thesis, Tobias Kohn, 2017

38 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

X[k] = t
k -= 1

for i in range(len(X)):
X[i] = round(X[i], 6)

print X

3.3 Variables and the Type System

In any imperative programming language, at runtime, each variable holds (or

is a reference to) a value. Depending on the language, we can then attribute

a certain type to the variable, the value or both. In Python, each value has

a fixed type, whereas the variables may reference any value, and hence type.

This makes Python a dynamically and strongly typed language.

Statically typed languages fix the type of variables and parameters. This

allows to easily infer the type of any variable already while the program is

being written and compiled, and before it is actually executed. Since Python

lacks statical typing, a compiler cannot, in general, infer and reason about the

types of the variables involved.

In constrast to weakly typed languages, a value cannot change its type in

a strongly typed language, and the only automatic type cast is from “integer”

to “floating point” numbers. For instance, in the weakly typed JavaScript lan-

guage, the expression "1"+ 2 evaluates to the string "12" whereas Python

throws an exception because of incompatible types.

Dictionaries. One of the most basic data structures in Python are dictionaries

(also known as “associative array” or “hash-table”), as will become apparent

in the course of this discussion. Basically, Python uses dictionaries to manage

variables and fields. This allows, e. g., for dynamic creation of new variables

anywhere in the program.

PhD-Thesis, Tobias Kohn, 2017

3.3. VARIABLES AND THE TYPE SYSTEM 39

Objects. From an object-oriented perspective, Python’s values are all objects

descending from a common base class PyObject. As the variables all carry the

same type PyObject, we can omit type declaration in the program.

PyObject

string integer float list dictionary

Figure 3.1: Python’s types are in fact classes with a flat hierarchy as shown

here. However, every value in Python is also an object of a common ancestor

type “PyObject”.

All operations are internally translated to method calls on the objects.

For instance, the expression x + 1 internally translates to the method-call

x.__add__(consts.int(1)). Type checking is therefore done by the objects

themselves and not by the interpreter.

In addition to standard methods such as the __add__-method mentioned

above, each object holds a dictionary with additional fields or methods. A

method call or field access from within Python is performed by looking up the

respective name in this dictionary. If a method or field cannot be found, the

interpreter reports an “object has no field”-error.

Frames and the lifetime of variables. Whenever a code block with its own

scope is entered (such as a program/module or function), the interpreter cre-

ates a frame-object to hold all variables during the code’s execution. Each

frame has a dictionary with its “local” variables, as well as references to a

calling frame (if any) and the currently executed line.

The lifetime of any variable is certainly limited to the lifetime of the con-

taining frame. However, variables are dynamically created whenever a value is

assigned to it. For instance, the statement x = 2 might create a new variable

x in the current frame, and assign the value 2 to it. There is also the possibility

PhD-Thesis, Tobias Kohn, 2017

40 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

of deleting a variable so that its lifetime ends before the end of the scope.

Finally, Python’s exec-statement even supports the creation (or removal)

of variables and functions with names determined at runtime. For instance,

we could set a variable x to the value 123.45:

exec "x = 123.45"

It is immediately clear that the contents of such a string can be determined

at runtime. This method is used, for instance, by Python’s standard turtle-

module, where almost all functions available through the module are created

dynamically.

The bottom line is that a Python compiler has not only difficulties in in-

ferring a variable’s type, but it might even be unable to reliably determine all

variables and functions that are defined at any given point in the program.

Mutable and immutable values. Each value is an object, and each variable

is a reference to an object. This implies that the copy assignment y = x does

not actually copy the object itself but just creates a new reference to it. For

immutable objects, including numbers and tuples, there is no discernable dif-

ference to actually copying the value. Some objects, such as lists, however,

can change their value(s).

For example, the following program will print [1, 2, 3].

x = [1, 2]
y = x
y.append(3)
print x

Strings and integers. Note that Python does not have a dedicated “char”-

type, but uses strings of length 1 instead. For integers, Python provides two

types: int for 32-bit integers and long for integers of arbitrary size. For most

programmers, however, the distinction between these two types is completely

transparent and newer versions of Python have dropped the distinction alto-

gether.

PhD-Thesis, Tobias Kohn, 2017

3.4. PYTHON’S GRAMMAR 41

3.4 Python’s Grammar

This section provides a brief overview of Python’s grammar as far as it is rel-

evant for the remainder of this thesis. We naturally leave out various details,

which can be found in Python’s official documentation [50, 53] (the full gram-

mar specification can also be found in Appendix 9.2).

The primary purpose of this section is to provide the basis, upon which we

can discuss the parser in Chapter 7. We will therefore include some additional

remarks that are relevant in the context of parsing and error detection.

Python 2 versus Python 3. Python 3 brought a series of changes to the

syntax and semantics of the languages. For instance, print is no longer a

reserved keyword, but has become a mere built-in function. On the other

hand, True and False have become proper keywords. While a discussion of

the differences and merits is beyond the scope of this thesis, it is important to

note that different versions of Python exist.

In order to ease transition, Python allows to change print from a keyword

to a function already in Python 2. This is done via a special import-statement.

In other words, the grammar can actually be changed by the program code.

Lines and indentation. In Python, each line contains basically one state-

ment. However, inside brackets and parentheses 〈NEWLINE〉-tokens are ig-

nored. Hence, a logical line can be distributed across several physical lines.

The following is an example of a single logical line spanning two physical

lines, due to the fact that the 〈NEWLINE〉-token is inside brackets, and hence

ignored.

primes = [2, 3, 5, 7,
11, 13, 17, 19]

Each logical line has an indentation property, which is the number of white

space characters at the beginning of the line. The indentation is used to form

code blocks (suites) and express control flow. In the following example, the

PhD-Thesis, Tobias Kohn, 2017

42 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

“forward” is repeated 4 times, whereas the “left” is not part of the loop’s

body.

repeat 4:
forward(100)

left(90)

Python’s grammar specifies that the lexer uses a stack to keep track of the

lines’ indentation. The stack starts with a zero on top, that is never removed.

For each line L, its indentation IL is compared to the indentation value IS on

top of the stack. If IL is larger than IS , the lexer pushes IL onto the stack and

produces a 〈INDENT〉-token to mark the beginning of a suite. If IL is smaller

than IS , the lexer pops values off the stack and produces 〈DEDENT〉-tokens

until IS and IL are equal. Accordingly, Python’s official grammar specifications

uses 〈INDENT〉- and 〈DEDENT〉-tokens, respectively.

3.4.1 Expressions

Expressions and tests. The basic syntax of expressions follows standard rules

as found in many modern programming languages. In addition to expressions,

Python also introduces tests. A test might be one of the following (this is also

expressed in Fig. 3.2):

• an expression, e. g., foo(1, 2) + 3 * items[4] ,

• a comparison, e. g., 0 < foo(1, 2) <= 9 ,

• a Boolean expression, e. g., x > 4 and y < x ,

• a conditional expression, e. g., 1 if x >= 0 else -1 ,

• an anonymous function, e. g.: lambda x: x**2 .

Sequential types and their literals. Lists and dictionaries are among the

most important types in Python. Both types can, of course, be defined using

PhD-Thesis, Tobias Kohn, 2017

3.4. PYTHON’S GRAMMAR 43

test

comp
:

==

<

!=

name

test

test

expr

,

if else

lambda

comp

and

or

comp

and

or

Figure 3.2: A test might just be a simple expression, or a sequence of expres-

sions and comparison operators. It also includes the possibility of conditional

expressions or anonymous functions.

a literal syntax such as [1, 2, 3] , or {’a’: 1, ’b’: 2} , respectively.

There is, however, the additional possibility of using list comprehension.

Using list comprehension, we can write the list of all square numbers from

12 to 92, and the list of all odd square numbers, respectively, as:

digits = [1, 2, 3, 4, 5, 6, 7, 8, 9]
squares = [x**2 for x in digits]
odd_squares = [x for x in squares if x % 2 != 0]

A list comprehension is always an expression, followed by a for-structure and

possibly if-expressions. Dictionary comprehensions differ only in the expres-

sion at the beginning (and of course the curly braces instead of the square

brackets), e. g.:

ascii = { chr(x) : x for x in range(65, 91) }

Finally, note that list comprehensions can also be used as arguments in a func-

tion call.

Parsing and error recognition. Three keywords that are otherwise thought

of in the context of statements can also occur as part of expression: “if”,

“else” and “for”. Accordingly, they cannot necessarily be used as synchroniz-

PhD-Thesis, Tobias Kohn, 2017

44 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

list
dict

item

item

test
expr

{

[

}

]

,

,

infor

,

Figure 3.3: Besides the usual sequence of items a list (or dictionary) could also

contain a list comprehension. For a list the item-node here is a “test”, while

for dictionaries it is a “test ’:’ test”.

ing tokens, and it is more difficult to diagnose the correct error in cases such

as x = z if (y) . This might be either an incomplete if-expression or an

extra space in the function name “zif”.

The actual grammar for list comprehension is rather delicate with some

obscure special cases. Python’s official grammar mentions that both the two

following expressions must be legal [50]:

[x for x in lambda: True, lambda: False if x()]
lambda x: 5 if x else 2

In case of an error in a slightly more complex list comprehension, correct

identification of the problem might just be virtually impossible.

3.4.2 Statements

Compound and simple statements. Python distinguishes between compound

statements, which themselves can contain other statements, and simple state-

ments. Typical examples of compound statements include function definitions,

if-statements and loops, each having a body of other statements (the suite).

Simple statements, in turn, can contain several small statements, separated by

semicolon.

The body of compound statements is called suite. A suite is either a simple

statement directly following the colon, or an indented block of statements

below the compound statement’s header. That is:

PhD-Thesis, Tobias Kohn, 2017

3.4. PYTHON’S GRAMMAR 45

〈suite〉 ::= 〈simple_stmt〉 | 〈NEWLINE〉 〈INDENT〉 〈stmt〉+ 〈DEDENT〉

compound
statements

simple
statements

if

while

for

def

print

+=...*=

del

pass

return

break

import

importfrom

name

name

name

test

test

test
test

test

testexpr

expr

:

:

:

:
suite

suite

suite

suite

in

else

=

()

name

,

,

,

,

,

,

,

,,

Figure 3.4: A simplified version of statements in Python, with compound

statement at the top and simple or small statements below. For simplicity,

this overview leaves out some details (such as default values for parame-

ters in functions) and a few statement-types (such as classes and try-catch-

structures).

Expression statements. Every test and expression is also a valid statement.

The expression can be followed by assignment operators such as “=” for direct

assignment or “+=” for augmented assignment. This means that both “x = 1”

(an assignment) and “x == 1” (a simple test) are valid statements in Python,

PhD-Thesis, Tobias Kohn, 2017

46 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

even though the second one has absolutely no side effect (it still is compiled

and executed, though).

Discussion. In principle, almost all statement types in Python can be iden-

tified by their initial keyword. The exceptions only include assignments and

expression statements, most notably function calls. However, these exceptions

typically make up a large portion of actual programs. Moreover, since we

cannot assume the Python program to be syntactically correct, we must find

alternative ways to identify the various statements.

For our purposes it is important to note that in particular compound state-

ments cannot only be identified by their initial keyword but also by their struc-

ture (apart from a few ambiguous cases such as “ef foo():”, which could be

both a function definition or an if-statement). On the other hand, keywords

such as if, for and in serve different purposes, depending on context. When

trying to correct a program we must therefore be careful not to confuse, e. g.,

if-statements with if-expressions.

3.5 Changes to the Python Programming Language

As part of the educational programming environment TigerJython, we have

made some changes to the Python languages as used in the environment. Most

notably, we introduced a new looping structure for educational purposes, and

changed the behaviour of the built-in input-function.

Division. The division of two integer values can, in generall, yield two dis-

tinct results: the result may be either another integer value or a floating point

value. For instance, 14/5 may yield 2 (with remainder 4), or 2.8, respectively.

Python 2 discerns between the two possible result types, based on the types

of the two operands. If both operands are integer values, the division is inter-

preted as an integer division yielding an integer result. Otherwise, the division

PhD-Thesis, Tobias Kohn, 2017

3.5. CHANGES TO THE PYTHON PROGRAMMING LANGUAGE 47

yields a floating point number. In other words. 14/5 yields 2, but 14.0/5.0

yields 2.8.

A variable’s datatype, however, is solely based on the value. This makes

it very difficult to predict for any two numeric values the true outcome of

the division operation. Python 3 rectified this situation by introduction of

two different division operators. In Python 3 the /-operator always yields the

floating point result, whereas the //-operator is used to obtain the result of an

integer-division.

For the educational TigerJython-environment, we decided to use the two

division-operators as in Python 3. This is not entirely compatible with tradi-

tional Python 2 implementations, but gives more consistent and predicitable

results.

Input. Python 2 has two separate input-functions. raw_input() returns the

user’s input as a string value. input(), on the other hand, evaluates the input

as a Python expression and returns the result thereof. When a numeric value is

entered, raw_input() returns the string representation of the number, while

input() returns the number itself. For proper names, however, input() is

problematic as it tries to interpret the entered name as a variable in Python’s

current context.

For educational purposes, it is desirable to have an input-function that re-

turns numeric values as either integer or floating point values, and everything

else a string value. For the TigerJython-environment, we therefore changed

the input()-function, so as to return either the numeric value as integer or

floating point, respectively, and everything else as a literal string.

A simple loop. Python’s grammar includes two looping structures: for- and

while-loops, respectively. In order to repeat a code sequence a given number

of times, both structures may be used. In this case, however, both structures

use a variable.

PhD-Thesis, Tobias Kohn, 2017

48 CHAPTER 3. THE PYTHON PROGRAMMING LANGUAGE

From an educational point of view, it might be desirable to introduce vari-

ables at a much later point than loops (in particular when taking into account

the difficulties of the variable concept, cf. Chapter 5). The programming lan-

guage “Logo”, for instance, provides a simple loop structure that works entirely

without variables. This allows to introduce the concepts of loops and variables

seperately [25].

We have therefore introduced a new loop structure into our Python en-

vironment: a repeat-loop takes a number and then repeats its body for the

given number of times. The grammar had to be adapted as follows:

〈compound_stmt〉 ::= 〈old_compound_stmt〉 | 〈repeat_stmt〉

〈repeat_stmt〉 ::= ‘repeat’ [〈expression〉] ‘:’ 〈suite〉

Internally, a repeat-loop is translated to a for-loop.

Finally, the repeat-loop can be used without a number to iterate its body

indefinitely, i. e., to create a potentially infinite loop. Semantically, such a

repeat is equivalent to while True: .

PhD-Thesis, Tobias Kohn, 2017

Chapter 4

The Models of Mathematics

and Programming

4.1 Introduction

Mathematics and imperative programming use different underlying models of

computation. In a nutshell, mathematics both transforms expressions (terms)

and uses substitution on a syntactic level to simplify expressions and thereby

arrive at “evaluated” values. Programming, in contrast, performs computa-

tions on concrete values and objects.

In order to make the differences between the two fields more accessible,

we discuss the concepts of function and of variable in mathematics and pro-

gramming. Understanding the differences between mathematics and impera-

tive programming will later allow us to state to which extent students apply a

mathematical model to programming.

In practice, the vast majority of students will not have a completely devel-

oped mental model of mathematics as presented here. The overall concepts

and ideas, however, still apply and help us understand how students could

PhD-Thesis, Tobias Kohn, 2017

50 CHAPTER 4. THE MODELS OF MATHEMATICS AND PROGRAMMING

look at programming.

x = x + 1. The formula x = x + 1 is most famous for having completely

different interpretations in mathematics and programming. Mathematics in-

terprets the formula as an equation equivalent to 0 = 1. There is no term

we can substitute for x that would make the formula a true statement. In

imperative programming, on the other hand, the formula is a computational

statement, meaning that the current value of the variable x shall be increased

by 1.

At first glance, it looks as if the problem of x = x + 1 could be solved by

introducing a new asymmetric assignment operator (e. g., “<-” or Pascal’s “:=”

[42, 60]). There are, however, underlying misconceptions that cannot be tack-

led by a mere change of syntax. Students might, e. g., believe that a variable

can hold an entire expression or even equation. Bayman and Mayer found in a

study about novice programmers’ misconception in Basic programming that a

third of the students understood the statement LET A = B + 1 as writing the

expression B + 1 to memory space A [4].

If we consider the statement x = x + 1 as storing the expression x + 1

in variable x, we still get an unsolvable problem. For example, would the

following program actually print anything?

x = 3
x = x + 1
print x

When the “value” of x is the expression x+1 we can perform a substitution in

the third line, still ending up with the expression x+1 containing the variable

x. This variable would then have to be substituted by x + 1 again, leading to

an infinite expansion:

print x => print x+1 => print x+1+1 => print x+1+1+1 => ...

Hence, the statement x = x + 1 is not only problematic for students who

believe that it is an equation to be solved, but also for those who have a math-

ematical model of the machine where variables are substituted by expressions.

PhD-Thesis, Tobias Kohn, 2017

4.1. INTRODUCTION 51

Finally, even if the assignment is fully understood as storing a numeric

value in a variable the statement “x = x + 1” has a sequential oddity. Whereas

virtually all expressions are evaluated from left to right, the assignment state-

ment must first evaluate the expression on the right. Even though we under-

stand the increasing of a variable’s value by 1 as an atomic statement, it must

take two steps in time in the present form (unless a compiler transforms it to

an atomic instruction).

In conclusion, the rather common and essential operation of increasing

the value of a variable is far from trivial. Several papers propose to explicitly

teach the role of variables and common patterns such as this statement to

increase a variables’ value (e. g., Samurçay [54], see also Section 5.2). The

approach of this thesis, however, is to rather try and correct the underlying

model programming students use to explain what happens when a computer

executes the program.

Related work. Various articles already mention the phenomenon of students

inappropriately applying mathematical concepts in programming, particularly

in the case of variables.

Samurçay states that the concept of variable in programming is a new con-

cept for the students and is in contrast to the mathematical, but insufficient

concept they already have [54].

Putnam et al. [49] describe in their article about misconceptions of pro-

grammers how a student thinks that LET X = X + 1 was not possible be-

cause the variable X had previously been set to zero, leading to the statement

LET 0 = 0 + 1. They then remark: “This student’s misconception appears to be

the result of inappropriately bringing knowledge from another domain – algebra

– to programming.” [49].

However, even though the connection between mathematics and program-

ming is frequently mentioned, to our knowledge there is no explicit study

about students applying a mathematical model to imperative programming.

PhD-Thesis, Tobias Kohn, 2017

52 CHAPTER 4. THE MODELS OF MATHEMATICS AND PROGRAMMING

4.1.1 Organization

The chapter’s core is to be found in Sections 4.2 and 4.3, respectively. In these

two sections, we discuss the concepts of variables both in mathematics and

programming. This will be the basis for further discussion in the remainder of

the thesis.

Section 4.4 includes an additional discussion about the concepts of func-

tions in mathematics and programming. Even though we will not make ex-

plicit use of the function concepts, we chose to include this brief discussion

here to further highlight and elaborate the differences between the two mod-

els that underlie mathematics and programming, respectively.

4.2 Variables in Mathematics

As based on logic and set theory, mathematics is a system of transformations

on the syntactical level. Simplifications such as a3 · a4 = a7 are not based on

what the symbol a is or what value it might represent. It is a truth directly

obtained from the syntactical definition a3 = a · a · a. In fact, it is a strength of

mathematical reasoning that such simplifications are applicable to any object

for which we have the concept of an associative multiplication.

Basic definitions. For a complete definition of the entire framework see,

e. g., Halbeisen [21]. Since we do not require the full language of logic, we

restrict ourselves to a small subset which we deem relevant for the current

discussion.

The formal language of mathematics includes (but is not limited to) the

following symbols:

• Variable symbols, e. g., x, y, z, . . .

• Constant symbols, e. g., 0, 1, . . .

• Function symbols, e. g., f,+, ◦, . . .

PhD-Thesis, Tobias Kohn, 2017

4.2. VARIABLES IN MATHEMATICS 53

Each function symbol has an arity n which is the number of its arguments.

Binary operators such as +, for instance, are 2-ary function symbols. In this

case, instead of “function”, we will also use “operator” as a synonym.

A term is then a word in the formal language according to the following

rules: any variable or constant symbol is a term, and, for any n-ary function

f , the expression f(t1, t2, . . . , tn) with terms tk is a term.

Given any two terms t1 and t2, we can build an equation t1 = t2, meaning

that any occurrence of the term t1 can be replaced by the term t2 and vice

versa (in practice, we might need parentheses to avoid ambiguity).

According to the above definitions of the formal language, a variable is just

a symbol in the language’s alphabet. However, this is missing one important

aspect of variables as captured by the following rule: Let x be a variable symbol

in a term ϕ. We can then substitute all occurrences of x in ϕ by a term t, written

ϕ(x/t). The result ϕ(x/t) is also a term. (Note that this is a simplification

in which we leave out the notion of formulae, as well as of free and bound

variables).

In a nutshell, a variable is a symbol that can be substituted by a term. The

substitution is performed on a purely syntactical level.

An example from group theory. In group theory, we always have an asso-

ciative operation ◦ and a (left) neutral element e, such that, for any element g

in the group, we have e ◦ g = g. This means that, whenever we have a term g,

we can replace it by e ◦ g and whenever we have e ◦ g, we can replace it by g.

The same applies to the inverse element g−1, and the equivalence g−1 ◦ g = e.

Based on these basic definitions, the additional equivalence g ◦ g−1 = e

(which would have to be proven beforehand), and the idea of substitution, we

can prove that e is also a right neutral element:

g = e ◦ g = g ◦ g−1 ◦ g = g ◦ e

Note how the entire proof uses only substitution of symbols. At no point did

we require the elements g, g−1, or the operation ◦ to be anything beyond mere

PhD-Thesis, Tobias Kohn, 2017

54 CHAPTER 4. THE MODELS OF MATHEMATICS AND PROGRAMMING

symbols.

In many applications of group theory, we will replace ◦ by another operator

symbol such as + or ·, and then use either 0 or 1 as the neutral element. While

this looks as if we were to use concrete values in such cases, we have still not

given an interpretation for the constant symbols 0, 1, or the operator symbols.

0 might denote the first element of the natural numbers N or a vector (0, 0, 0),

say. The constant symbol 1 is often used not only to mean the natural number,

but also for the unity matrix, say.

Solving equations. Solving an equation for a variable x means that we want

to find all constant symbols, for which we can substitute x such that the equa-

tion becomes a true statement. Depending on the domain, there does not

always exist such a constant. The equation x2 + 1 = 0, for instance, has no

solutions in real numbers, x = x+ 1 has no solution at all.

Yet, even in the case of unsolvable equations, we can still perform typical

transformations such as subtracting x on both sides in the case of x = x + 1,

yielding 0 = 1. We can even try and transform x2+1 = 0 into (the not entirely

equivalent equation) x =
√
−1. Even though there is no value for

√
−1 in the

real numbers, it is a legal term in mathematics.

Our point is: variables are mere symbols adhering to some simple rules. If

variables had to be placeholders for existing objects, we could neither write

down an equation such as x = x+ 1 nor transform it.

This is exactly where imperative programming differs: during execution of

a program, each variable must represent an existing value or object.

4.3 Variables in Programming

In the context of programming, the value of a variable is a property of the

computing machine’s current state. Within each state, a variable’s value is a

fixed constant, but as the states change a variable can take on different values.

PhD-Thesis, Tobias Kohn, 2017

4.3. VARIABLES IN PROGRAMMING 55

The concepts presented here are in part also based on the formal defi-

nitions of Abstract State Machines. The formal definition of Abstract State

Machines is based on formal logic and includes a thorough definition of what

a variable is (see, e. g., Börger and Stärk [7] or Gurevich [20]).

Computational machines. There are various models for computational ma-

chines, including the Turing machine, the simpler finite state machine (FSM),

or the random-access machine (for a more detailed overview, see, e. g., Sav-

age [55]). Even though the Turing machine provides the common basis for

questions about computability, real computing devices can be modelled as the

simpler FSMs, since they lack an infinite storage capacity. Savage remarks:

“Although there are languages that cannot be accepted by any machine with a

finite number os states, it is important to note that all realistic computational

problems are finite in nature and can be solved by FSMs.” [55]

For our present discussion about concepts in imperative programming, tak-

ing the FSMs as basis of the computational machine will suffice. A reader more

familiar with Turing machines might just as well think of the computational

machine as a Turing machine. We will, however, speak of the machine’s states,

which would correspond to the more inclusive concept of configurations in the

case of Turing machines.

The essential property of our computational machine is that it can be seen

as having a set of states Q, along with well defined transitions between states.

By programming the machine, we specify rules for these transitions.

Variables. In the context of the states of a computational machine, we can

understand what a variable in imperative programing is. The most important

aspect is that a variable is a constant symbol as defined on the current state.

Changing a variable’s value always includes a change to another state. Hence,

for each state q, a variable gives us a uniquely determined value attached to

that state q.

PhD-Thesis, Tobias Kohn, 2017

56 CHAPTER 4. THE MODELS OF MATHEMATICS AND PROGRAMMING

More formally, a variable is a function f : Q → T from the set of states to

a non-empty set T . For each state q, it returns a uniquely determined value in

T .

The set T is usually modelled as the variable’s data type. Hence, for a

variable of type integer, T might be the set of all integer values between, say,

−32 536 and 32 535.

As an example, let us consider a simple computer with two 8-bit registers.

We identify the machine’s states with 16-bit numbers as concatenations of the

two registers, resulting in states such as q0105, q0A1F , etc. (where we have

used hexadecimal numbers to shorten the representation of the 16 bits). The

two registers could be represented as functions rA : Q → T and rB : Q → T ,

respectively. In this case, T is the set of all integers from 0 to 255. For the state

q3C12, we then obviously get rA(q3C12) = 3C and rB(q3C12) = 12, respectively.

Finally, note that, in contrast to mathematical logic, a variable f : Q →
T always returns a constant symbol from the set T and not a general term.

Hence, for any given state, a variable is not a symbol subject to substitution,

but a value with fixed meaning, instead.

Changing context. Once we have established that the values of variables

represent (part of) the state of the computation machine, we can easily inter-

pret assignments to variables as a particular type of transition. Conceptually,

assigning a value to variable like x = 2 could be seen as “find and proceed to

the state where the variable x takes on the value 2.”

It is essential to understand that all statements in the program operate on

a given state. In this context the initially considered example x = x + 1 is

not a (mathematical) statement about x or any of its properties, but rather an

instruction for how to change the program’s state.

The change of state during a program’s execution renders it a necessity to

keep track of the state if we want to (mentally) trace a program. In contrast to

mathematics, a statement like y = 2x does not hold universally in the entire

program, but has to be applied on a specific state and must be seen in that

PhD-Thesis, Tobias Kohn, 2017

4.4. FUNCTIONS 57

context. Or, considering that variables are functions (i. e., x = x(q)), we can

see the statement y = 2x as “continue the program in state q with y(q) = 2x(q)”.

For any subsequent state q′, however, the equation y(q′) = 2x(q′) does not

necessarily have to hold.

4.4 Functions

The defining property of a function in mathematics is that, for each set of

inputs, the returned object or value is uniquely determined. In imperative

programming, this requirement of uniquely determined results is dropped.

Indeed, in a program we can easily have a function with no arguments at all

that returns a different value each time it is evaluated – think, for instance, of

a function that returns the current time in milliseconds.

Mathematical functions as static objects. In the language of set theory, a

function f : M → N with sets M and N can be identified with a subset

G ⊂ M × N . G then has to fulfill the property that, for any two elements

(x1, y1), (x2, y2) ∈ G, we have x1 = x2 ⇒ y1 = y2. The subset G is sometimes

called the graph of the function (see, e. g., Amann and Escher [2]).

In some cases, we find a formula to express the relationship between input

m ∈ M and output n ∈ N of a function f : M → N . We should be aware,

though, that it is not the act of calculation that assigns the output n to the

input m. The tuple (m,n) is an element of the graph G in an absolute sense

and “timeless manner”, and the calculation of n for a given m is merely the

search for that particular tuple. In mathematics, it does not matter how we

obtain the value n.

Mathematical logic introduces yet another aspect of functions. In this con-

text, a function f with parameters t1, t2, . . . , tn is a term whenever we replace

each of the parameters tk by a term. The value of a function is here thought

of as being constructed from its parameters on a mere syntactical level. There

PhD-Thesis, Tobias Kohn, 2017

58 CHAPTER 4. THE MODELS OF MATHEMATICS AND PROGRAMMING

is no actual computation involved (see, e. g. Halbeisen [21]).

Computations. In contrast to mathematics, the notion of computation is es-

sential to a function in programming. The value of a function is computed

from the values assigned to the parameters and the current state of the ma-

chine. Evaluation of a function does not take place on the syntactical level as

in mathematics and logic. More to the point, a function such as f(x) = x2 + 1

returns the concrete, computed value 290 for the input 17, whereas in mathe-

matics we could say that f(17) primarily equals 172 + 1.

In mathematics, we consider the terms T1(x) = x2 + 7x + 3 and T2(x) =

(x + 7)x + 3 as equivalent. For any real number x ∈ R, both T1 and T2 yield

the same value. From the computational point of view, however, there is a

difference. The first term T1 has four operations including two multiplications.

The second term T2 comprises three operations with one multiplication.

A function in programming may depend not only on the arguments but

also on the current state of the machine. This is evidenced by functions re-

turning a pseudo-random number, input values from a peripheral device or

some properties of the machine’s state such as the current time. Due to this

implicit dependency on the machine’s state and possibly external processes, a

function’s value is not in the same way uniquely determined as in mathemat-

ics.

Of course, as long as we consider computational machines as closed de-

terministic systems (i. e., without input from an outside world), we can again

regard functions as uniquely determined with the machine’s current state as

an implicit parameter.

4.5 Conclusion

Core concepts such as variables and functions clearly differ in their mean-

ing when seen from a mathematical or programming perspective, respectively.

PhD-Thesis, Tobias Kohn, 2017

4.5. CONCLUSION 59

While mathematics focuses on syntactical manipulations, programming em-

phasizes computations and hence the changing of a computational machine’s

state.

The mathematical model of substitution breaks down in programming be-

cause each occurrence of a variable has to be seen in its proper state and

context. In short, a variable in programming is in fact a function of the state

and assignments can be seen as transition rules.

PhD-Thesis, Tobias Kohn, 2017

60 CHAPTER 4. THE MODELS OF MATHEMATICS AND PROGRAMMING

PhD-Thesis, Tobias Kohn, 2017

Chapter 5

An Investigation of the

Concept of Variables in the

Context of Programming

Education

5.1 Introduction

Computer science and mathematics share a common history and have a close

relationship. This is also reflected in a common terminology. Especially in

the context of imperative programming, however, some common terms shared

among both disciplines refer to different concepts. Among these terms are

function and variable as discussed in Chapter 4.

The foremost example to illustrate the difference is the famous statement

“x = x + 1”. In imperative programming this statement is an assignment, in-

creasing the value of the variable x by 1 (assuming that x refers to a positive

PhD-Thesis, Tobias Kohn, 2017

62 CHAPTER 5. THE CONCEPT OF VARIABLE

integer in the first place). In mathematics it would be interpreted as an equa-

tion with no solution. There is no object we could put in for x that would

render this statement true.

The similarities and differences between mathematics and programming

become important in high school programming education. We found indica-

tion that some students apply mathematical concepts to programming, result-

ing in misconceptions about how programming works.

Based on the concept of cognitive conflict and by teaching the students how

to manually trace the values of variables in the program, we succeeded in

improving their understanding of variables and the computational machine.

5.1.1 Theses

In the course of this chapter, we are going to provide support for two of our

theses:

Thesis 1. Some common misconceptions and errors made by novice pro-

gramming students can be explained as the students applying a mathematical

model of syntactical substitution to program execution.

Thesis 2. It is possible to directly improve the students’ understanding and

cognitive concept of variables and the computational model through explicit

teaching.

5.1.2 Organization

This chapter is organized as follows.

Section 5.2 summarizes related work about programming students’ mis-

conceptions. Of special importance are Sections 5.3 and 5.4 as they present

and discuss our own findings about these misconceptions.

PhD-Thesis, Tobias Kohn, 2017

5.2. RELATED WORK ABOUT STUDENTS’ MISCONCEPTIONS 63

In Section 5.5, we will present a possible solution to improve students’

understanding and to foster them in developing a correct mental model.

5.2 Related Work about Students’ Misconceptions

The novice programmer has been extensively studied and the literature spans

several decades of research in different areas. For on overview of recent re-

search, see, for instance, the articles by Robins et al. [52], and Pears et al.

[47]. Still one of the most frequently cited sources on this topic is Soloway

and Spohrer’s collection of papers [56].

We limit our discussion of related work to variables and assignments, and

include only studies that are of direct relevance for our own work.

5.2.1 Studies about Misconceptions

Syntactic problems. The foremost syntactic problem is certainly the per-

ceived symmetry of the equal sign, letting student believe that both x = 2 and

2 = x were valid assignments. This is confirmed by several studies. Another

problem pertaining the syntax is the belief that the name of a variable has

direct influence on its contents, e. g., a variable called “max” would automati-

cally hold the maximum value of a list.

Du Boulay remarks that the asymmetry of the assignment operator = con-

fuses some learners and that they have difficulties seeing why the statement

“LET A = 2” is legal while “LET 2 = A” is not [13]. McIver and Conway [42],

for instance, suggest that a language for novice programmers should use an

operator such as “←” instead of the equal sign “=”.

The perceived symmetry of the equal sign is also mentioned by Putnam

et al. [49]. They note that students occasionally interpreted “LET A = B”

as assigning the value of A to B (from left to right). However, students had

no problems with statements such as “LET A = B + C” where the direction is

more clear and less ambiguous.

PhD-Thesis, Tobias Kohn, 2017

64 CHAPTER 5. THE CONCEPT OF VARIABLE

The READ-statement found in the programming language Basic seems to

have been the source of various difficulties and misconceptions. Students

would, for instance, believe that the variables “smallest” and “first” in the

following program would hold the values −3, and 99, respectively [49].

READ SMALLEST
READ FIRST
DATA 99, 2, -3, 6, 29

Modern programming languages usually have no equivalent to such a “READ”-

statement. The notion that the variable’s name determines its content might

therefore be partly outdated.

This dissertation is based on Python as the programming language. Chang-

ing the syntax to address possible difficulties is therefore beyond its scope. It

could be an interesting study, however, to see whether changing the assign-

ment operator has any effects on the students’ misconceptions and would im-

prove their performance.

The values of variables. For a novice programmer it might not be clear

what kind of information a variable actually stores. Some students believe

that a variable keeps a history of all its values while other students assume

that a variable can store entire expressions.

Putnam et al. [49] state that the most significant misconception concerning

variables is that a variable could hold more than one value. This misconception

mostly surfaced in the context of “READ” and “PRINT”-statements. Printing the

value of a variable, for instance, would print the entire history of values ever

stored in that particular variable.

Of particular interest in the context of our study is the notion that a vari-

able might hold an unevaluated expression. Du Boulay indicates that a student

might understand the assignment “LET A = 7 + 4” to store the unevaluated

expression instead of the value 11. He proposes to tackle this misunderstand-

ing “by stressing the idea that a variable can hold only one number” [13]. How-

ever, our students are trained in mathematics classes to consider “7 + 4” as

PhD-Thesis, Tobias Kohn, 2017

5.2. RELATED WORK ABOUT STUDENTS’ MISCONCEPTIONS 65

“a number”. Writing, e. g., 7 + 4 ∈ N is common practice in mathematics.

Just stressing that a variable can only hold one number might therefore not be

enough to correct any misconceptions.

The nature of assignments. It is frequently noted that students seem to

think of assignments as equations. More interesting in our context, though,

are questions related to the exact nature of assignments when understood

as assignments. While some students believe x = y links the two variables

together (reflecting changes in each other), others assume that the source

variable y would be empty after the assignment.

It might be somewhat problematic that, in some programming languages

or under certain circumstances, x = y could mean that the two variables are

linked together. If both x and y are pointers or references, for instance, any

change to x would also affect y. In Python, this is true when y is a mutable

object such as a list.

Bayman and Mayer [4] asked 30 college students to describe the work-

ing of the statement “LET A = B + 1”. While 30 % of these students gave a

correct answer, 43 % said that the equation A = B + 1 would be written to

memory. 33 % of the students believed that the expression B + 1 would be

stored as the value of the variable A (note that some of the students obviously

had more than one concept in their answers). In other words, a third of the

students understood the concept of an assignment (in contrast to an equa-

tion) and still believed that the unevaluated expression would be stored as a

variable’s “content”.

In his discussion about the statement “LET A = B”, du Boulay states that

some novices see the statement as linking the two variables together “so that

whatever happens to ‘A’ in future also happens to ‘B’” [13]. He also notes how it

could be seen as removing the contents of B and placing them in A, and con-

cludes: “One of the problems for the learner is distinguishing an operation which

implies copying, and so independence, from one of sharing and so dependence”

[13].

PhD-Thesis, Tobias Kohn, 2017

66 CHAPTER 5. THE CONCEPT OF VARIABLE

The roles of variables. The basic idea of studying the roles of variables is

based on the observation that variables are often part of more or less fixed

structures. For instance, a variable might be used as a counter variable in a

loop. Teaching such roles of variables to students could improve the students’

understanding of variables.

In his paper on the concept of variables in programming, Samurçay notices

that “The mathematical model of variable and the equality relation constitutes

for a novice an initial but insufficient model for operating on the programming

variables” [54].

Sumurçay’s approach to improve the understanding of variables is based

on the idea that variables in programming often have specific roles, based on

plans or structures. He discerns three different uses of variables in a loop:

initialization, update and test. In addition, he proposes four different uses of

the assignment sign:

1. Assignment of a constant value, e. g., a := 3,

2. Attribution of a calculated value, e. g., a := 3 * k,

3. Duplication, e. g., a := k,

4. Accumulation, e. g., a := a + 1 or a := a * k.

According to Samurçay the “concepts of variables and assignment take their full

programming meaning in the last case” [54], hence in the case of accumulation.

While we certainly agree that programming students often start out with

a mathematical model of variables, we do believe that even “simple” state-

ments such as duplication in the above list can be a cause of confusion and

misconceptions.

The idea of the different roles of variables has been picked up by several

studies [9, 34, 46]. The general consensus is that the explicit teaching of the

roles of variables increases the students’ understanding and performance.

The idea of different roles of variables can also be found in the literature

about mathematics education (e. g., Heck [22]). Our focus, however, is more

PhD-Thesis, Tobias Kohn, 2017

5.3. STUDENTS’ MISCONCEPTIONS ABOUT VARIABLE ASSIGNMENT AND EVALUATION67

on the underlying concepts and mental models held by the students. We there-

fore did not pursue this further as part of this thesis.

5.2.2 Recent Studies on Difficulties

More recent studies focus more on the difficulties of individual concepts than

on the students’ misconceptions about these concepts. Studies like the one

of Lathinen et al. present surveys on how difficult students (or tutors) rate

concepts such as variables or loops [15, 35, 43]. While these studies certainly

provide valuable insight, in the context of difficulties and misconceptions we

cannot be sure how accurate the students’ sel-assessments are. In fact, stu-

dents who are not aware of their own misconceptions might rate a topic or

concept as easy and still not be able to apply it correctly (cf., e. g., Muller et

al. [44]).

Probably more accurate in identifying the difficulties of programmers are

studies about the students’ actual performance. Lister et al., for instance, ana-

lyzed students’ reading and tracing skills of programs [37]. Yet, their conclu-

sion that they “see few comprehension errors due to misconceptions” [37] might

not apply to our own case. The programs used in the study did not include

situations where a misapplied mathematical model would really become ap-

parent. In particular, there were no assignments of more complex expressions

to variables.

5.3 Students’ Misconceptions about Variable As-

signment and Evaluation

5.3.1 Methodology

The author of this thesis has been teaching an introduction to programming

for over four years at a Swiss high school. The class is mandatory during

10th grade for all students who choose physics and applied mathematics as

PhD-Thesis, Tobias Kohn, 2017

68 CHAPTER 5. THE CONCEPT OF VARIABLE

their elective. The entire course comprises two semesters with two hours each

week. All classes take place in a computer lab and the emphasis is on hands-on

exercises. Due to space restrictions in the computer lab, the number of stu-

dents is typically between 10 and 16 students. Larger classes are split among

different teachers.

During each semester, the students take three graded tests with a total of

six tests per year. The tests have to be written without access to a computer.

In order to assess the overall understanding of the students, the author has

collected selected answers from the tests. They form the basis for the following

presentation.

From the collected answers, we selected four problems to be included in

our investigation. In order to be considered for inclusion in the study, the

problems’ solution had to include non-trivial use of variables. In particular, we

were looking for dependencies between different variables. The four problems

then included are the following.

[P1] The students had to write a program that computes the solutions to the

quadratic equation ax2+bx+c = 0. The students were explicitly required

to handle special cases.

[P2] The students had to write a program that draws the graph of the math-

ematical function f(x) = x(x − 5)(x + 5)/25 in the range between −40
and 40.

[P3] The students were given an incorrect solution to [P2] and were asked to

trace the program and identify the error.

[P4] The students were asked to trace a given program including variables

and functions, and explain the reasoning behind their respective an-

swers.

PhD-Thesis, Tobias Kohn, 2017

5.3. STUDENTS’ MISCONCEPTIONS ABOUT VARIABLE ASSIGNMENT AND EVALUATION69

5.3.2 Summary

From the problems included in the tests, we chose four problems to present

here. For each problem, we state the number of students who completed the

test, together with a brief description of the question. We then reprint the

original question (please note, however, that the original questions were in

German) and give a report of the students’ answers as they are of interest for

our study.

The results from the four problems can be summarized as follows.

[P1] Solving the quadratic equation. Four of twenty students computed a

value before checking whether the value can be computed. This might

be an indication of a model of lazy evaluation where a variable’s value

is not actually computed until it is used.

[P2] Drawing the graph of a function. Six of twenty students did not re-

compute the value of a dependent variable (another ten students did

not provide any usable answer and are therefore not included in the

statistics). This is consistent with a model where variable assignments

establish a relationship between different quantities.

[P3] Analyzing a program that should draw the graph of a function. Six

of ten students did not correctly trace the given program. Their answers

are also consistent with a model where variable assignments establish a

relationship between different quantities.

[P4] Tracing a program involving variables and functions. Four of ten

students argued that a variable’s value would be computed at the time

the variable is actually used. Their reasoning is consistent with both a

model of lazy evaluation and one where variable assignments establish

a relationship between different quantities.

The numbers of students exhibiting a model of lazy evaluation or of assign-

ments establishing relationships between variables are summarized in the fol-

PhD-Thesis, Tobias Kohn, 2017

70 CHAPTER 5. THE CONCEPT OF VARIABLE

lowing table.

[P1] Quadratic equation 4 20 20%

[P2] Graph of a function (1) 6 20 30%

[P3] Graph of a function (2) 6 10 60%

[P4] Tracing values 4 10 40%

5.3.3 Quadratic Equations [P1]

Twenty students were asked to write a program to solve quadratic equations,

handling special cases. For our study, the interesting question is whether the

students check if the solutions can be computed before actually computing

them.

Problem: Write a program to solve the quadratic equation ax2 + bx+ c = 0.

Make sure you handle special cases such as when no solutions exist. Hint: use

the formula you know from mathematics class:

x1,2 =
−b±

√
b2 − 4ac

2a

Students’ answers: In principle, there are two special cases requiring atten-

tion when using the above formula. First, the value of a could be zero, leading

to a division by zero. Second, the discriminant D = b2−4ac might be negative,

leading to non-real results.

In order to solve the problem students were expected to test for the case

of a negative discriminant before computing the square root of it. While most

students did indeed check for the special case, not all of them did this checking

before computing the square root. The following program shows part of a

student’s answer. Note that the solutions x1 and x2 are computed before the

check for a negative discriminant in line 3.

1 x1 = (-b + sqrt(b**2 - 4*a*c))/(2*a)
2 x2 = (-b - sqrt(b**2 - 4*a*c))/(2*a)
3 if b**2 - 4*a*c > 0:

PhD-Thesis, Tobias Kohn, 2017

5.3. STUDENTS’ MISCONCEPTIONS ABOUT VARIABLE ASSIGNMENT AND EVALUATION71

4 print "The solutions are", x1, x2
5 elif b**2 - 4*a*c == 0:
6 print "The solution is", x1
7 else:
8 print "There are no solutions"

Some students also checked if the square root of the discriminant was zero:

1 x = (-b + sqrt(b**2 - 4*a*c))/(2*a)
2 if sqrt(b**2 - 4*a*c) > 0:
3 print "The solution is", x

For our study we only looked at whether a student did some “fragile” comput-

ing before checking for computability. The correctness of the test itself was

not important, so that both of the programs presented above are considered

as “computing before test”.

Frequency: The problem was included in the tests of two distinct classes

with ten students each. Four of the ten students in the first class made the par-

ticular mistake of computing the solution first and checking for computability

afterwards. In the second class, after a more thorough discussion of the prob-

lem, no student made this mistake.

5.3.4 The Graph of a Function (1) [P2]

Twenty students were asked to write a program that draws the graph of a given

(mathematical) function. The interesting question for our study is whether

the students recompute the dependent variable after changes were made to

the independent variable.

Problem: Write a program to draw the graph of the function f(x) given

below in the range between −40 and 40.

f(x) =
x(x− 5)(x+ 5)

25

PhD-Thesis, Tobias Kohn, 2017

72 CHAPTER 5. THE CONCEPT OF VARIABLE

Students’ answers: While there was some minor disagreement among the

students’ answers whether the loop should iterate 80 or rather 81 times, the

overall answers were very similar. Some students, however, did not recompute

the value of the dependent variable y (representing f(x)) inside the loop as

would be required for a correct program. The following program shows a

student’s answer where y is only computed once.

1 x = -40
2 y = x *(x-5)*(x+5) / 25
3 setpos(x, y)
4 for i in range(80):
5 x += 1
6 lineto(x, y)

Frequency: From a total of 30 students ten did not provide an answer at all

or calculated the necessary values by hand to insert them as constants into the

program. Since we have no information to assess their mode of thinking, we

did not include them in our statistics. Among those 20 students providing a

usable answer, six did not recompute the value of y inside the loop.

5.3.5 The Graph of a Function (2) [P3]

Eleven students were given a program, asked to determine the picture drawn

by the program, and to find a logical error in the program. This is basically the

inverse problem to the first “graph”-problem: students are given an incorrect

solution, and are asked to figure out why it does not work.

Problem: (a) What picture does the program given below actually draw?

Sketch the resulting picture. (b) The program contains a logical error. Describe

briefly what is wrong and how the program can be corrected.

1 x = -20
2 y = 1/4 * x**2 - 9
3 setpos(x, y)
4 repeat 41:
5 lineto(x, y)

PhD-Thesis, Tobias Kohn, 2017

5.3. STUDENTS’ MISCONCEPTIONS ABOUT VARIABLE ASSIGNMENT AND EVALUATION73

6 x += 1

Correct solution: (a) The program draws a horizontal line. (b) In order

to draw the intended parabola, the value of y would have to be recomputed

inside the loop.

Students’ answers: Of the eleven students completing the test, one did not

provide an answer to this question. Six of the remaining students said that the

program would draw a parabola and four students said the program would

only draw a horizontal line.

Some of the students answered to (b) that lines 5 and 6 were swapped.

They pointed out that the first time the lineto command was to be executed

it was useless since the coordinates had not changed.

Interestingly, two of the students who said the program would draw a

parabola answered question (b) correctly. They both wrote that, in order for

the program to work properly, the variable y would have to be recomputed

inside the loop. Among the students answering question (a) correctly, three

also gave the correct answer to question (b) and one student had no answer

to (b).

Frequency: The following table summarizes the students’ answers. In total,

only four of the ten students drew the program’s picture correctly and five

students correctly identified the problem.

(b) correct (b) incorrect total

(a) correct 3 1 4

(a) incorrect 2 4 6

total 5 5 10

PhD-Thesis, Tobias Kohn, 2017

74 CHAPTER 5. THE CONCEPT OF VARIABLE

5.3.6 Tracing a Program [P4]

Ten students were asked to trace a given program. With this program, we

wanted to directly test their ability to understand variables, functions, and

assignments.

Problem: What does the following program print on the screen? Determine

the program’s output and briefly explain the reasoning behind your answer.

1 x = 5
2 def f(x):
3 return x*x
4

5 g = x*x
6 x = 8
7 print f(2)
8 print f(x)
9 print g

Correct solution: The program would print the three numbers 4, 64 and 25.

Students’ answers: Besides the correct solution, there are four interesting

types of answers to this problem.

Three students answered that the last number printed was also 64. They

reasoned that g is defined as x · x and that x has a value of 8 at the time of

the printing. From their answers it is clear that they employed a model of

step-wise substitution: g 7→ x · x 7→ 8 · 8 7→ 64.

One student wrote that the statement “x = 5” was illegal at that position

and would therefore be ignored by the computer. Hence, the output of the

last statement would clearly be 64 again. Note that in this case the model of

substitution is even so strong that g can be defined with no proper definition

for the variable x at that point.

Another two students said that the statement “print f(x)” would not

work at all. One thought that f(x) cannot be properly evaluated as the pa-

rameter x would have to be replaced by a concrete value. The other said that,

PhD-Thesis, Tobias Kohn, 2017

5.4. DISCUSSION 75

at that point, the variable x has two distinct possible values: 5 and 8. There-

fore the computer cannot replace the parameter x by a concrete value since it

does not know which one would be the correct one.

Finally, one student just ignored the statement “x = 8”.

Frequency: Of the ten students only three provided a correct answer. An-

other four clearly used a model of mathematical substitution, arriving at an

incorrect answer. The remaining three students considered the program itself

to be incorrect or tacitly “corrected” it.

5.4 Discussion

Due to the small sample size, our results are not sufficient for a statistical

analysis. However, the aim of this thesis is to provide a possible interpretation

for the already statically proven problems students exhibit with the concepts

of variable and assignment. In the section to follow, we will then further

investigate possible solutions.

5.4.1 Computational Models in Mathematics and Program-

ming

Let us briefly recall the two models underlying mathematics and program-

ming, respectively. As we will later argue that the students’ mistakes might

be due to an underlying mathematical model it is important to work out the

nature of this mathematical model, and its differences to the proper model for

imperative programming.

Mathematics. Mathematics is primarily based on the idea of substitution. An

equation such as y = 2x establishes a relationship between the two quantities

named x and y. Without further knowledge about any of these quantities, we

PhD-Thesis, Tobias Kohn, 2017

76 CHAPTER 5. THE CONCEPT OF VARIABLE

can replace y, for instance, in another expression 5x−3y to arrive at 5x−3(2x),
which simplifies to −x.

In order to substitute and simplify mathematical expressions, we can fol-

low syntactical rules and do not need any actual values for any of the variables

involved. This is for example key in solving equations. We can conduct differ-

ent simplifications and transformations of the equation without knowing the

value of x – even without knowing if there is a possible value for x.

In essence, mathematics uses substitution on a syntactical level to fill in

terms for variables.

Programming. In contrast to mathematics, programming has variables not

as mere syntactical symbols. A variable is a reference to a concrete object

(at least during runtime) and the computations, as laid out by the program,

require that each variable is a valid reference.

An assignment such as “y = 2*x” does not establish a relationship between

two symbols. It is an actual computation, of which the result is to be stored as

value of the variable y. While the values of the variables might be unknown

when a program is being written, they are completely available when the pro-

gram is being executed.

In essence, programming performs computations with concrete values.

5.4.2 Students’ Model

A considerable part of the students does not only have difficulties with the

concepts of variables and assignments, but also seems to use a mental model of

the computer that is closer to that of mathematics than to how programming

actually works. In particular, students attribute algebraic capabilities to the

machine executing their programs.

Some students certainly use substitution. Problem [P4] gives us a direct

insight into the reasoning of the students. From the students’ answers, we

PhD-Thesis, Tobias Kohn, 2017

5.4. DISCUSSION 77

know that four of the ten students used a model of step-wise substitution.

One student even allowed the variable g to use the value of another variable

x before x was properly set to a value.

What we cannot derive from the students’ answers is whether they believe

g to hold the expression x · x as its “value” or the computer to store the entire

assignment as an equation g = x · x to later infer the value of g when needed.

Lazy evaluation. Problem [P1] about solving quadratic equations gives us

fewer clues about the students’ model of the machine. However, the inver-

sion of computation and testing for computability suggests the notion of lazy

evaluation, i. e., a variable’s value is not computed until it is accessed.

Such lazy evaluation is consistent with a mathematical model. The as-

signments x1,2 = −b±
√
b2−4ac
2a might, again, be seen as merely establishing a

(functional) relationship between the involved quantities, giving a recipe for

the later computation to be performed. When the solutions are then printed,

the computer is thought to actually substitute the terms defined before and

evaluate them.

Functional Relationships. Of the two graph drawing problems [P2] and

[P3], the first [P2] is more interesting to our study. The second problem [P3]

might strengthen our point, but it is not clear if the errors made there are due

to other difficulties of the students, such as an inability to correctly read and

trace a program (cf. Lister et al. [37]).

In the case of the programs intended to draw a graph, the assignment

y = x(x−5)(x+5)
25 is obviously seen as establishing a functional relationship of

how to compute the value of y out of the value of x. While some students

could just have forgotten to recompute y when needed, it is unlikely to see

such an accidental omission in several students’ answers at once.

Again, the notion of a functional relationship is consistent with a mathe-

matical model. When y is used later in the program to draw a line to a specific

PhD-Thesis, Tobias Kohn, 2017

78 CHAPTER 5. THE CONCEPT OF VARIABLE

location, a machine following the algebraic model would first replace y by its

definition and then put in the value of x.

Conclusions. Among the problems considered, [P4] clearly exposes that some

students use a model of substitution as the machine’s model of execution. This

model of substitution can be found in mathematics and we hence surmise that

students are transferring preknowledge from mathematics to programming.

The other three problems provide more indirect indication that the stu-

dents are applying an incorrect mental model to the machine. However, the

mistakes recorded and presented here are consistent with a mathematical

model of substitution.

5.4.3 Threats to Validity

We can clearly not draw any statistical conclusions from the results obtained.

Beside the small sample size, we must also be aware that the selection of

high school students might not be representative of a larger population. The

students who took the class had all chosen mathematics and the sciences as

their elective major.

The mistakes seen in problems [P1] to [P3] might have different causes

than a misconception about the underlying computational model. Not updat-

ing the value of the dependent variable in the problems about drawing a graph

([P2] and [P3]) could, for instance, be due to a simple oversight. Also note

that two students in problem [P3] answered that the program would draw a

parabola (instead of a line) but also clearly stated the error in the program

was the missing update of the dependent variable. Hence, problem [P3] in

itself would be rather weak support for our thesis.

However, the students’ mistakes are consistent with a mathematical model

of computation. Building on that interpretation of the students’ understand-

ing, we present a possible solution in the following sections. The relatively

PhD-Thesis, Tobias Kohn, 2017

5.5. IMPROVING THE STUDENTS’ UNDERSTANDING 79

high success of the intervention further supports our interpretation of the re-

sults.

Finally, other studies report in part even larger numbers of students ex-

hibiting misconceptions about variable assignments (see, e. g., Bayman and

Mayer [4]). In the light of the context of such studies, we can assume that

variables and assignments are difficult topics, and our findings are not just

single occurrences.

5.5 Improving the Students’ Understanding

In order to address the misconception about variables and the computational

model, we designed a special classroom session. The concept is based on two

approaches: teaching the students how to trace the variables’ values through

the program’s execution, and explicitly confronting the students with their

misconceptions.

The entire teaching session takes roughly one hour. 15 minutes are spent

on an initial test, 30 minutes on the actual teaching itself with discussion and

explanations, and 15 minutes for a second test, preferably taking place a day

later.

Even though we did not have enough students for a statistically signifi-

cant result, we found that of the 16 students taking the class, nine showed

the misconception in the first test. In the second test, only one student was

still consistently and two additional students were partly applying the wrong

model. Hence, our teaching model seems to be a promising approach.

5.5.1 Related Work

The concept of our teaching sessions combines the ideas of cognitive conflict

(i. e., confronting students with their misconceptions) with teaching manual

tracing skills. The latter is based on the findings of a study about programmers’

reading and tracing skills, which indicates that tracing the variables’ values in a

PhD-Thesis, Tobias Kohn, 2017

80 CHAPTER 5. THE CONCEPT OF VARIABLE

program increases the likelihood of correct answers. Both ideas are elaborated

in the following paragraphs.

The idea of teaching students how to trace the variables’ values is also

used, e. g., in Hromkovič’s textbook about LOGO programming [25].

Tracing skills. Prompted by the problem that many students perform poorly

at solving programming tasks, a study by Lister et al. [37] investigated the

students’ ability to read and trace existing programs. The study’s premise is

that students’ poor performance is not necessarily due to a lack of the ability

to solve problems but rather due to fragile knowledge of the programming

constructs.

Participants of the study were asked to complete twelve multiple choice

questions to demonstrate their understanding of existing programming code.

The questions’ programs were written in Java or C++, and primarily involved

arrays and loops. When the authors looked at the annotations students made

on the test papers (called “doodling”), they found that some students manually

traced the values of variables involved in the program, e. g., by using tables.

Comparing the results, the study finds that “if a student carefully traces through

the code [. . .], thus documenting changes in variables, the likelihood of getting

the correct answer is high. In contrast, not doodling only leads to the correct

answer 50 % of the time” [37].

While the study of Lister et al. is not about teaching to trace programs,

its findings suggest that tracing the values of variables in the program helps

students to read and understand the programs. It is therefore worthwhile to

consider explicitly teaching the skill of tracing programs to students.

Cognitive conflict: confronting students with misconceptions. An impor-

tant aspect of learning to program is the forming of cognitive or mental models

about how a program is actually being executed. As we have pointed out be-

fore, some students seem to have and apply incorrect models about how the

computing machine works.

PhD-Thesis, Tobias Kohn, 2017

5.5. IMPROVING THE STUDENTS’ UNDERSTANDING 81

In a study about improving the mental models of novice programmers, Ma

et al. propose a teaching model based on cognitive conflict and visualizations

[39]. They explain that cognitive conflict “emphasizes the importance of explic-

itly challenging the pre-existing ideas held by students and thereby motivating

them to form more appropriate models.” [39].

Ma et al. also remark that cognitive conflict alone is not sufficient but

must be supplemented by supporting the student to form appropriate mental

models. As explained in more detail further below, in our case we taught

the students how to explicitly trace variables’ values, and discussed why their

mental models might not apply to programming.

Another study involving the idea of cognitive conflict is about using multi-

media to teach basic principles of physics. Online multimedia treatments have

become a frequently employed (additional) method in teaching. Yet it is not

a priori clear how effective such multimedia treatments are and how good the

learning outcome is. Muller et al. [44] have studied the learning outcomes of

multimedia treatments in physics education.

Their study compared the improvement in students’ understanding of physics

concepts between different multimedia treatments. If the treatment included a

discussion of common misconceptions, students showed a significantly better

understanding afterwards. This is particularly true for students with no or lit-

tle prior knowledge. While advanced students seemed to benefit less from the

discussion of misconceptions it did not hurt their understanding, either. The

authors conclude: “this study suggests that raising misconceptions in traditional-

style lectures should increase student conceptual understanding” [44].

However, the study also clearly states that exposing the learner to miscon-

ceptions is not enough: “It is important to note that although misconception-

based multimedia on average resulted in greater learning gains, it is not a stan-

dalone solution to conceptual difficulties. The process of moving from alternative

ideas to a coherent scientific view is complex and it remains only partially under-

stood.” [44]

In difference to the described study, we were not limited to a linear mul-

PhD-Thesis, Tobias Kohn, 2017

82 CHAPTER 5. THE CONCEPT OF VARIABLE

timedia presentation, but had the opportunity to interact directly with the

students. This allowed us to not only present a common misconception but

to use an interactive approach where each student could assess for him- or

herself in how far the misconception applied to him or her.

5.5.2 Teaching

Premise. The students have just been introduced to variables in Python.

They know how to assign a number to a variable, how to compute a variable’s

value from other variables and parameters, and how to increase the value of a

variable by a constant value using the operators += and *=.

For instance, the students are able to understand and write the following

program that draws a spiral.

s = 10
repeat 18:

forward(s)
left(60)
s += 2

The teaching session. The sequence starts with a short test: the students

are asked to manually trace a turtle program and complete the picture by

labeling all lines with their respective lengths. This test is intended to make

the student’s beliefs and assumptions explicit and tangible (for the test, see

Section 5.5.3).

As a second step, the turtle program in the test is discussed in class. At

this point, the students are confronted with the correct solution and the dif-

ferences to their own answers. Misconceptions become apparent at this point

– particularly to each individual student.

The teacher introduces the notion of manually tracing the program and

keeping track of the variables’ values in a table. This is used as a tool to

explain the correct solution to the initial problem, but also to discuss further

examples.

PhD-Thesis, Tobias Kohn, 2017

5.5. IMPROVING THE STUDENTS’ UNDERSTANDING 83

After the discussion about tracing the value of variables the teacher sum-

marizes the important points and clearly shows in how far the concept of vari-

able in programming differs from the mathematical concept. Key point is that

a computer works strictly sequentially and stores only the numeric and imme-

diately evaluated value of a variable. Mathematical dependencies as in y = 2x

cannot be expressed in programming at this stage (students did not yet learn

about functions). Rather, the program would have to update the dependent

variable y each time a change to x has been made.

In the class following the discussion, the students are given a second test

with two programs to trace. The first program is very similar to the program of

the initial test. The second program requires some transfer and application of

what the students have learned. After the students have completed the tests,

the correct solutions are, once again, discussed in class.

5.5.3 The Test Questions

First test. The following program draws the picture on the right. How long

are the respective line segments? Label each line segment with its correct

length and briefly explain your reasoning (a clear calculation suffices).

1 a = 5
2 b = 3*a
3 forward(a)
4 a += 3
5 forward(a)
6 right(90)
7 forward(b) start

Solution and discussion: The first line segment actually consists of two line

segments with an overall length of 5 + 8 = 13. The second line segment has a

length of 3 · 5 = 15.

Students with a mathematical model of program execution will answer

that the second line segment has a length of 3 · 8 = 24 because they evaluate

b to 3 · a first and then set a = 8.

The first line segment is made up of two forward-instructions. This is

PhD-Thesis, Tobias Kohn, 2017

84 CHAPTER 5. THE CONCEPT OF VARIABLE

intended as a distractor from the true purpose of this test as finding the correct

value of b. Students are supposed to expect the difficulty of the problem in the

two forward-instructions for one line segment.

Second test: Question 1. The following program draws the picture on the

right. How large are the respective angles? Label each angle with its correct

value and briefly explain your reasoning (a clear calculation suffices).

1 a = 15
2 b = a*4
3 forward(a)
4 a += 5
5 right(a)
6 forward(120)
7 right(b)
8 forward(80)

start

Solution and discussion: The first angle has a value of 160◦ (the turtle turns

by 20◦). The second angle is 120◦ (the turtle turns by 4 · 15◦ = 60◦).

Students with a mathematical model of program execution will answer

that the second angle has a value of 100◦ (the turtle turns by 4 · 20◦ = 80◦).

Since the first test used the length of line segments, we use angles’ values in

this second question. This involves a small transfer effort so that the students

do not encounter the very same problem as before. There are two distractors

in this problem. The first is the forward(a)-instruction. Using the variable

for a forward-movement has no effect on the angle afterwards. The second

problem is that the angles by which the turtle turns are not the angles asked

for.

For the evaluation of the students’ answers, we also accepted 20◦ and 60◦

as correct. The purpose of our study is not to test the students’ geometric

abilities but their understanding of variables in the context of programming.

Second test: Question 2. What figure does the following program draw?

Sketch the resulting figure and label each line segment with its correct length.

s = 1

PhD-Thesis, Tobias Kohn, 2017

5.5. IMPROVING THE STUDENTS’ UNDERSTANDING 85

t = 3*s + 1
repeat 4:

forward(t)
left(90)
s += 2

Solution and discussion: The correct answer is a square with a side length of

4.

Students with a mathematical model of program execution will answer

that the program draws a spiral with increasing side lengths 4, 10, 16, 22.

The basic design of this question is cognate with the problem of drawing a

graph. However, this version requires less prerequisites and can thus be done

earlier in the curriculum (drawing a graph requires the students, e. g., to be

familiar with the coordinate system).

5.5.4 Results

Tests during classroom sessions. Before and after the classroom sessions,

our students completed a test to assess their understanding of variables and

the computational model (see Section 5.5.2). We have collected the students’

answers, wrote individual feedback for each student, and kept track of how

many students would exhibit indications of a mathematical model of program-

ming.

In total, we had 16 students in our class. Two students had already exten-

sive prior experience in programming. All other students had about 20 classes

of introduction to programming with Python and turtle graphics over a period

of two months.

The initial test showed strong indications of a mathematical model applied

to programming. Of the 16 students, nine made the mistake of thinking that a

seemingly dependent variable was automatically updated. This result is even

higher than we would have anticipated from our previous results.

The second test included two problems. Both problems were answered

correctly by 13 of the 16 students. We found that, in each of the two problems,

PhD-Thesis, Tobias Kohn, 2017

86 CHAPTER 5. THE CONCEPT OF VARIABLE

only two students made the mistake of believing a variable’s value would be

updated automatically. It is interesting to note, however, that one student

made the mistake in both problems. Two other students each answered one

problem correctly and showed a misconception in the other problem.

In both tests some students obtained results that were incorrect, but could

not be attributed to a misapplication of a mathematical model.

The following table summarizes the number of students giving correct or

incorrect answers, respectively. As the second test included two problems, we

give the numbers for both problems in the test.

Even though the number of correct answers is the same for both problems

in the second test, we actually had one student who showed the misconception

in both problems and two students showing the misconception in only one of

the problems.

First test Second test

Correct 5 31.25% 13 13 81.25%

Misconception 9 56.25% 2 2 12.50%

Other incorrect 2 12.50% 1 1 6.25%

Discussion. The figures and results from one class of 16 students are, again,

not sufficient for a thorough statistical analysis. However, the figures pre-

sented here indicate that the proposed solution might indeed be effective in

improving students’ understanding of the computational model underlying

programming.

5.6 Further Evidence

Based on the results obtained from the tests in classroom and the experience

of the teaching session, we wanted to see how far we could reproduce the

results. We created a short survey and chose two questions that were simple

enough but would clearly show any misconceptions of the participant.

PhD-Thesis, Tobias Kohn, 2017

5.6. FURTHER EVIDENCE 87

As this survey was addressed to students with a more advanced back-

ground, the second question included a function. In fact, this second question

is as close as possible to problem [P4] in Section 5.3.

At the time of writing, we had the chance to conduct the survey in two

classes of 15 and 9 high school students, respectively, in their 12th grade.

None of the students attended a programming class by the author. However,

the 15 students from the first class have all taken a programming class in

Python about one year before the survey. The 9 students in the second class

were currently attending an advanced elective course on computer science at

high school.

Of the 15 students completing our survey, all 15 students exhibited the

typical error in the first question. Four students also clearly used a model of

substitution in the second question. Of the nine students in the second class

four exhibited the error in the first question and one in the second question.

First question. What does the following program draw? Sketch the resulting

shape and label all line segments with their respective lengths.

s = 1
t = 3*s + 1
repeat 4:

forward(t)
left(90)
s += 2

The program actually draws a square. The definition of t, however, appears to

depend on the value of s. This might be reinforced by changing the value of s

– which in fact has no effect at all.

Of the 24 students who participated in the survey, 19 students drew a spi-

ral. 15 students wrote that the lengths of the spiral’s sides would be 4, 10, 16, 22.

The other four students made some minor errors in their calculations but ba-

sically arrived at the same solution.

PhD-Thesis, Tobias Kohn, 2017

88 CHAPTER 5. THE CONCEPT OF VARIABLE

Second question. What does the following program draw? Sketch the re-

sulting shape and label all line segments with their respective lengths.

x = 5
def f(x):

return x*x
g = x*x
x = 8
forward(f(3))
right(90)
forward(f(x))
right(90)
forward(g)

The point to look at here is the value students attribute to g on the last line.

The correct value would be 25, of course.

Four of the 24 students participating in the survey did not provide an an-

swer to this question. This might be due to the time constraints we had to

impose. Of the remaining 20 students, six said that g would have a value of

64, once again reasoning that g equals x · x and hence 8 · 8.

Discussion. It is doubtful that indeed all 15 students of the first class would

have the inappropriate mathematical model in programming. The results of

the first question might therefore, in part, be due to simple oversight. The

distractors such as increasing the value of s (which is without any meaning)

might have been too strong, rather revealing that the students tried to solve

the problem by applying structures or plans, instead of tracing the actual pro-

gram (cf., e. g., Lister [36]). Yet, if the students had a strong and firm under-

standing of the underlying computational model, at least some should have

gotten the correct answer.

The results of the second question, however, work well with our previ-

ous findings and the findings of studies such as Bayman and Mayer’s [4] that

about a third of the students exhibit a model of mathematical substitution in

programming.

Overall, in the second class fewer students exhibited the presently stud-

PhD-Thesis, Tobias Kohn, 2017

5.7. CONCLUSION 89

ied misconception (although the number of participants is far too low to draw

any statistically correct conclusions). Given that the misconception is based on

students applying a mathematical model to programming, it is hardly surpris-

ing that a class with focus on mathematics and the natural sciences performed

worse than a class with focus on computer science.

5.7 Conclusion

Mathematics and imperative programming share some common terminology.

The underlying models and concepts, however, such as variable and function

differ in key aspects. When students with mathematical training start to learn

programming, they might apply the models to programming they have learnt

in mathematics, leading to misconceptions and erroneous applications.

Thesis 1. Some common misconceptions and errors made by novice program-

ming students can be explained as the students applying a mathematical model

of syntactical substitution to program execution.

By analyzing high school students’ answers to problems and programs writ-

ten by these students, we found various mistakes and errors indicating deeper

misconceptions. We were able to show that the errors of about a third of our

students could be explained if we assume that they work with a mathematical

model based on substitution. These students seemed to assume that the com-

putational machine that executed their programs has algebraic capabilities.

Out findings also correspond well to what has been mentioned in previous

studies (e. g., Bayman and Mayer [4]).

Thesis 2. It is possible to directly improve the students’ understanding and cog-

nitive concept of variable and the computational model through explicit teaching.

Based on preexisting teaching concepts, we designed a teaching session to

directly address the misconceptions of the students about the underlying com-

PhD-Thesis, Tobias Kohn, 2017

90 CHAPTER 5. THE CONCEPT OF VARIABLE

putational model of the machine. When applied in a class, the teaching session

has proven successful in improving the students’ understanding of variables.

Limitations and future research. Due to the small sample size of our classes,

we cannot draw any firm statistical conclusions from our studies. Such a statis-

tically significant study is beyond the scope and intention of this dissertation.

The indications, however, are strong enough to warrant a larger and broader

investigation of students’ concept of variables and the computational model.

There is no direct way to see what mental models students construct and

use in order to explain how programming works. We are required to look at in-

direct evidence and infer the models from the students’ answers and programs.

In this dissertation, we have provided a possible and consistent interpretation

of the results. Moreover, students might not have a fully developed mental

model of mathematics, either. The misconceptions would then be based on a

mathematically inclined model, still with about the same results.

PhD-Thesis, Tobias Kohn, 2017

Chapter 6

Syntax Errors of Students in

Python Programming

6.1 Typical Student Errors

This section presents a selection of common and noteworthy student errors we

have collected. The errors are divided into three different categories (below):

the first presents errors based on misconceptions about syntax and semantics.

The second category lists syntax errors, which are mostly just typing errors

and minor omissions. Finally, the third category is about errors which do not

violate Python’s grammar at all, but still give raise to various problems for

students.

During classroom sessions in high school programming classes, we kept

a journal with problems and misconceptions of our students. The collected

notes of four years of programming classes were used as a basis for the error

detection in the parser (see Chapter 7).

Several studies looked at the most frequent errors in students’ programs

(however, usually based on Java, e. g., [1, 12, 24, 27, 58]). In contrast to

PhD-Thesis, Tobias Kohn, 2017

92 CHAPTER 6. SYNTAX ERRORS OF STUDENTS IN PYTHON PROGRAMMING

these studies, the focus of this project is rather on capturing a wide spectrum

of possible errors. The actual frequencies of these errors are less important,

and might be evaluated as a follow-up study.

While the following list is an attempt to capture as many errors as possible,

such a list can naturally never be complete. Nevertheless, these 25 errors form

the basis upon which we built our parser.

PhD-Thesis, Tobias Kohn, 2017

6.1. TYPICAL STUDENT ERRORS 93

6.1.1 Misconceptions about Syntax and Semantics

A. Invalid names. The notion that valid names/identifiers must adhere to

a set of given rules is a new concept to many students. Sometimes they

choose names containing operators or even white space characters such

as “n-gon”, “n!” or “paint scene”. Depending on context, we might

consider the last case an instance of the “extra space”-error, instead.

For example: def n-gon():

B. Left to right assignments. The supposed symmetry of the assignment

operator has already been discussed in numerous papers and is a well

known problem. Some students believe that “x = 1” and “1 = x” are

both valid assignments. Particularly with more complex expressions, the

students then start by writing down the expression they want to compute

and add the assignment at the end, so as to save the obtained value in a

variable.

The underlying misconception might be strengthened by the use of cal-

culators in math classes. The calculators used by our students use the

syntax “1+ 2 · 3→ x” to store the result of an expression in a variable x.

That is, the target of the assignment is in that case indeed on the right

hand side.

For example: 123 = n

For example: (sqrt(p**2 - 4*q)-p) / 2 = x

C. Assignments in expressions. After having learned to use augmented

assignments such as “x += 1”, some students try to use augmented as-

signments as a basis for more complex variable updates and embed it

into an expression.

For example: (x *= 3) + 1

For example: y = (x *= 2)

PhD-Thesis, Tobias Kohn, 2017

94 CHAPTER 6. SYNTAX ERRORS OF STUDENTS IN PYTHON PROGRAMMING

D. Expressions as parameters. Parameters seem to be a difficult topic for

novice programmers. Apart from problems that do not affect syntactical

correctness, a few students try to modify the abstract parameters to a

function instead of the arguments.

For example:

def foo(2*x, y/2):
...

x = 123
y = 456
foo(x, y)

E. Literal values instead of variables. Similar to the use of expressions as

parameters, one student directly put string literals into a for-loop where

actually a variable would be required.

For example:

for "e" in word:
count += 1

F. Extra or missing spaces. Extra spaces are often found in compound

names, or in the middle of a double equal sign to emphasize that two

equal signs are used. Missing spaces are less common and mostly due to

a typo rather than a misconception.

For example: set pen color("blue")

For example: if x = = 0:

For example: deffoo():

G. Invalid else-statements. In the beginning, many students tend to write

a comparison after the “else”. The similarity between “if” and “else”

seems to give raise to the misconception that, like “if”, “else” requires

a condition, which then should be complementary to the one used in

“if”.

For example:

PhD-Thesis, Tobias Kohn, 2017

6.1. TYPICAL STUDENT ERRORS 95

if x >= 0:
...

else x < 0:
...

A second misconception about the “else” is that, as the “else” is part of

the “if”-statement, it must be placed inside its body.

For example:

if x >= 0:
print "positive"
else:
print "negative"

H. Missing or extra quotation marks. Understanding the difference be-

tween a name-token and a string literal turns out to be surprisingly dif-

ficult at first. That some libraries use constants while others use strings

further adds to the confusing situation (for instance, while our Python

system uses string literals such as "red" for colors, Java uses constants

such as Color.RED). One student even put the name of a function after

the “def” into quotation marks since it should not be interpreted as a

variable’s name.

For example: setPenColor(blue)

For example: def "foo"():

I. Division and modulo. A quite frequent problem involves the modulo

operator “%”. On one hand, the modulo- or remainder-operation itself

seems to be a difficult concept for our students. On the other hand,

using the percentage-sign as an operator here seems even more counter-

intuitive. This becomes apparent when student actually use integer divi-

sion when modulo is needed.

For example: if x // 2 == 0:

J. Invalid use of the and-operator. Some students start to use the and-

operator even before it has been discussed in class and mostly just based

PhD-Thesis, Tobias Kohn, 2017

96 CHAPTER 6. SYNTAX ERRORS OF STUDENTS IN PYTHON PROGRAMMING

on their intuition. These “uneducated” uses, however, lead to valid syn-

tax but hardly ever represent the student’s intention.

For example: if a and b > 0:

For example: return a and b

K. Wrong or extra keyword. In a few cases, students confused the key-

words and used, e. g., “for” instead of “if”. Other students wrote the

“def”-keyword also when calling/invoking a function.

For example: for x > 0:

For example:

def foo(x):
...

def foo(123)

L. Incorrect structure. In classroom sessions, students are often asked to

take an existing program and expand it. When the exercise asks for a

repetition, some students just put the entire program code into a loop,

including even import-statements and function definitions.

In principle, such a program as shown in the example below (using turtle

graphics) works correctly. Yet, including a function definition in a loop

is clear indication of a misconception in the context of novice program-

mers.

For example:

for i in range(6):
def square(s):

for i in range(4):
forward(s)
left(90)

square(20)
left(60)

PhD-Thesis, Tobias Kohn, 2017

6.1. TYPICAL STUDENT ERRORS 97

6.1.2 Minor Syntactical Errors

M. Unbalanced parentheses and brackets. A missing closing parenthesis

is a common error, but almost always a simple typing error. In Python, it

is problematic only because this missing parenthesis influences all sub-

sequent code and most Python interpreters do not recognize this error

properly.

For example: foo(12

N. Misspelled names or keywords. Typing errors are very common, partic-

ularly in longer names. That modern editors highlight (correctly spelled)

keywords in colors certainly helps, even though some students ignore

this.

Python’s dynamic nature is somewhat problematic here: misspelled iden-

tifiers are only detected during runtime when the interpreter tries to

access the variable. In some cases, the error goes even completely unno-

ticed, introducing subtle bugs.

For example: If x < 0:

For example: pint "The result is", x

For example:

x = 1
for i in range(5):

X = 2 * x
print x

O. Using keywords as names. Particularly in cases where students are not

(yet) aware that a given word is a keyword, they sometimes inadver-

tently use it as the name for an identifier.

For example: pass = True

P. Using assignment instead of comparison. Certainly one of the most

common and well known examples of a syntax error is the use of the

PhD-Thesis, Tobias Kohn, 2017

98 CHAPTER 6. SYNTAX ERRORS OF STUDENTS IN PYTHON PROGRAMMING

assignment operator with a single equal sign instead of the comparison

operator with a double equal sign.

For example: if x = 0: ...

Q. Misspelled operators. The misspelled operators we observed were all

of the form “=*”, “=!”, “=+” instead of “*=”, “!=”, “+=” etc. In other

words: the two characters making up the operator were flipped.

For example: x =* 2

R. Unterminated string literal. In some cases a string literal is missing its

closing delimiter.

For example: s = "abc

S. Missing colon, comma or operator. Compound statements require a

colon at the end of the first line. This colon is sometimes missing, but

students usually recognize the error quickly and add the missing colon.

Slightly more interesting is the case of a missing comma or operator.

We often found the missing comma in print statements. The missing

operator, on the other hand, is due to algebraic notation where, e. g., 2x

is written without the multiplication sign in between.

For example: print 2x + 1

For example:

if x != 0
print "The result is" 1 / x

T. Invalid indentation. While indentation errors might be indication that

student have not yet understood it correctly in the very beginning, we

found that most errors happen rather by accident. For instance, a student

might remove the loop but leave to body to be executed once and forgets

to also remove the indentation of the body’s code. That is why we list

this problem under minor syntax errors and not under misconceptions.

For example:

PhD-Thesis, Tobias Kohn, 2017

6.1. TYPICAL STUDENT ERRORS 99

x = 1
while True:

if x**3 > 1000:
break

x += 1

6.1.3 Beyond Syntax Errors

U. Code after a break-statement. It is not always properly understood

that a break- or return-statement means that the loop or function, re-

spectively, is left immediately. A break-statement is sometimes followed

by further code to be executed after the loop has been left. In other cases

the return-statement is seen as merely returning the value and followed

by a “break” so to actually leave the function.

For example:

t = 2
while t < x:

if x % t == 0:
break
print "Not a prime"

t += 1

For example:

def foo(x):
return x**2
break

V. Call without parentheses. Novice programmers are sometimes puzzled

as why their functions are not executed. Investigating their programs

reveals that they either did not try to call the function at all or forgot to

put (empty) parentheses after the function’s name.

For example:

def foo():
for i in range(10):

print i**2
foo

PhD-Thesis, Tobias Kohn, 2017

100 CHAPTER 6. SYNTAX ERRORS OF STUDENTS IN PYTHON PROGRAMMING

W. Useless computations. Before actually using a function in an expres-

sion, some students would first call that function just prior to its actual

use. When asked about it, they explained that first they have the re-

sult be computed and in the subsequent statement(s) this result is then

actually used.

For example:

sqrt(x)
if 0 < sqrt(x) < 1:

...

X. Useless Comparison. Python supports testing against a range, e. g.,

“if 0 < x < 1”. Particularly when negative numbers are involved, how-

ever, the test might not be satisfiable, leading to errors which are hard

to detect.

For example: if -3 <= x < -12: ...

We found one student in a programming class that used “Processing” (a

programming language based on Java) to consistently compare every-

thing with True and False. In Python, this does not work at all.

For example: if x < 3 == True: ...

Y. Shadowing. Students surprisingly often reuse names for different pur-

poses in their program. We give here just two examples of this problem.

For instance, during a class about turtle graphics, a student used the

name of a function again as a parameter to his own function (see be-

low). When the program is executed, Python complains that it cannot

call an integer. The problem, of course, is not the intention to actually

call an integer but that the parameter shadows the function, which was

intended.

In another case, students reused the name of a decorator (annotation)

to a function for the function itself. While this works in simple cases, it,

PhD-Thesis, Tobias Kohn, 2017

6.1. TYPICAL STUDENT ERRORS 101

once again, leads to bugs later on, when another function should receive

the same decorator.

For example:

def move(left):
forward(10)
if left == "Yes":

left(90)
else:

right(90)

For example:

@memoize
def memoize(x):

...

PhD-Thesis, Tobias Kohn, 2017

102 CHAPTER 6. SYNTAX ERRORS OF STUDENTS IN PYTHON PROGRAMMING

6.2 Related Work

How well does our list as given above cover actual errors? Are there any re-

lated studies we could use as a reference? Unfortunately, to our knowledge,

there are no studies about errors in Python. A direct comparison and asses-

ment is therefore difficult, and a comparison to errors in other programming

languages is of limited value.

Nevertheless, since most recent studies focus on Java, we compare our

results to the results obtained by these studies. We have to keep in mind,

though, that there are significant differences between Java and Python, which

must be taken into account.

6.2.1 Errors in Java

Numerous studies have investigated the frequencies of different errors in novices’

Java programs. As there are no comparable studies in Python, we use three

of these studies [1, 24, 58] as a basic guide to determine if our list of syntax

errors is missing important problems. However, many of the more frequent

syntax errors in Java cannot occur in Python, anyway.

Some of the problems reported in Java are caused, e. g., by misplaced semi-

colons. Students either forget to put a semicolon at the end of the statement,

or, often even worse, put a semicolon after the header of an if-statement, say.

The problem of such an extra semicolon is that it is syntactically legal but re-

sults in an empty body – something which is hardly ever intended by a novice

programmer.

Python has semicolons as well. They can separate or conclude small state-

ments on a single line (see section 3.4). There is virtually no need, however,

to put several statements on one line, particularly not in the context of novice

programmers. Finally, an empty statement must explicitly be written as the

pass-statement. Hence, a novice programmer simply cannot inadvertently

create a compound statement with an empty body. (This does not mean, of

PhD-Thesis, Tobias Kohn, 2017

6.2. RELATED WORK 103

course, that Python is a better language than Java, but simply that the errors

reported concerning semicolons cannot occur in Python).

Java-errors that translate to Python. The following table shows those Java

problems, which we consider directly applicable to Python as well. For each

of these problems, we have given the letter identifying the error in our list

of student’s errors. Three entries have no direct correspondence, as they are

runtime errors in Python, and are therefore not handled by the parser at all.

= versus ==, e. g. if (x = 7) P

mismatched brackets or string delimiters M, R

using keywords as identifiers O

forgetting parentheses after method call V

>= versus =< Q

not using return value of function W

confusing parameters and arguments D

use of comparison after &&, e. g. if (age >= 13 && <= 17) J

else without if G

misspelt word or command N

missing identifier, e. g. public class { ... (A)

cannot find identifier –

invoking methods with wrong arguments –

package does not exist –

Java errors not applicable to Python. Due to the large differences of syntax

and semantics between Java and Python, not all errors typically found in a

Java program can occur in a Python program. Some examples of inapplicable

Java problems are given below.

Two of the problems could be translated to Python but we feel that the

difference is still too large as to consider them directly applicable to both lan-

guages. Since and and & differ much more in Python than their Java counter-

parts && and &, a confusion is less likely.

PhD-Thesis, Tobias Kohn, 2017

104 CHAPTER 6. SYNTAX ERRORS OF STUDENTS IN PYTHON PROGRAMMING

&& versus & and versus &

missing braces missing indentation

flow reaches end of non-void method –

== versus .equals –

incorrect semicolon resulting in empty body –

wrong separators in for-loops –

loss of precision, e. g., int i = 7.3; –

incorrect semicolon after method header –

improper casting –

duplicate variable in the same scope –

6.2.2 Conclusion

Our list of errors seems comprehensive enough to include frequent errors re-

ported from other studies about novice programmers.

PhD-Thesis, Tobias Kohn, 2017

Chapter 7

Parsing Python-Programs of

Novice Programmers

7.1 Introduction

Python has found widespread use as an educational programming language.

While Python’s simplicity is well suited for novice programmers, the compiler’s

feedback certainly is not. Python’s reference implementation uses more or less

a single error message: “syntax error” with no further information. It might

even be displayed at the wrong position. But: are these scarce error messages

inherent to Python? Is Python as a language limited to crude error reporting

or could a compiler provide the necessary feedback for novice programmers?

This chapter presents the techniques used to build a Python parser, capa-

ble of detecting and handling the collection of student’s errors presented in

Chapter 6. At its core, the parser is based on a LL(1)-parser, which has been

enhanced to better detect syntax errors, resulting in an LL(*)-parser. In order

to recognize errors as accurately as possible, the parser considers the entire

statements, and not just individual symbols. A line starting with “wile” and

PhD-Thesis, Tobias Kohn, 2017

106 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

ending in a colon, for instance, can thus be recognized as a misspelled while-

statement.

The parser as described in this chapter is part of an educational Python

environment TigerJython. It is already in widespread use, particularly in high

schools in Switzerland and Germany.

7.1.1 Organization

Section 7.3 gives an overview of the three stages of the parsing process, that

includes the lexer, the preparser, and the actual parser, which are discussed in

more detail in Section 7.4, and Section 7.6, respectively.

Of particular importance is the handling of brackets and parentheses, as

discussed in Section 7.5. Brackets are both a frequent source of syntax errors,

and an important structuring element.

Finally, Section 7.7 discusses to what extent static analysis (e. g., determin-

ing an identifier’s type) is possible in Python, and how it is actually used to

recognize errors.

7.2 Premise

Let us start with a few assumptions about the programs we want to parse.

• The programs are small enough, so that their representations fit entirely

into memory,

• The programs usually contain (syntactical) errors,

• The syntax errors are isolated, i. e., there is not more than one error per

statement.

The first point is to say that we do not concern ourselves with efficiency, or the

problem of how to compile large projects that do not fit into memory. After all,

PhD-Thesis, Tobias Kohn, 2017

7.2. PREMISE 107

our target audience are novice programmers and educators, not professional

software engineers.

Second, there are already great parsing techniques for syntactically correct

programs. For Python, you could simply use the parser generator of your

choice, feed in Python’s grammar and be done. However, error handling of

existing Python parsers does not meet our requirements for an educational

system.

Finally, we put some restriction on the number and kind of errors we per-

mit. If the given input lacks basic structure or enough information to recon-

struct a valid Python program, our parser is allowed to simply give up. Section

7.2.1 gives more details about the restrictions we impose on input programs.

Restricting Python’s grammar. Some of Python’s features clearly address

the advanced programmer, and are not used in introductory classes, or by

novice programmers. In principle, we could therefore choose a subset of

Python, and restrict the parser to accepting just programs in that subset.

We decided, however, to rather build a parser that accepts all syntactically

legal Python programs. This also implies, for instance, that a function’s name

without parentheses remains a syntactically legal statement – even though it

has no side effects. In addition, forgetting to put the parentheses to call a

function is a rather common novice error. Instead of just executing a program

that, in the end, does nothing, we would like to provide an error message,

pointing out that the parentheses are missing.

We resolved this problem by introduction of configurable extended error

checking in the parser. By setting a flag, the parser can be operated in «strict

mode», and thereby disallow statements without side effects, for instance.

Not restricting the parser to a subset of Python also means that it can parse

Python libraries, which might be imported into a student’s program. This is

important for static analysis.

PhD-Thesis, Tobias Kohn, 2017

108 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

Related goals. There are a number of tools to check a Python program for

possible problems and errors. To our knowledge, however, all of these tools

require a valid abstract syntac tree (AST) of the program to operate on. Thus,

in case of syntax errors, the tools are of no help to specify the exact cause of

the error. In contrast, this thesis’ main concern is with creating an AST for a

given (erroneous) input Python program.

Another interesting problem is the correctness of a computer program.

Again, checking the correctness of the input program is far beyond the scope

of this project. Whenever we speak of correctness, we mean syntactical cor-

rectness, and hence the possibility to create a proper AST for the given source

code.

7.2.1 Isolated Occurrence of Errors

A key requirement for our parser is that all syntax errors occur “isolated”, i. e.,

we can think of the program as correct, except for one single syntax error.

The intention behind this requirement is that, in case of a syntax error, the

parser can look at the error’s environment, and infer the exact cause for the

error. If there is enough information in the error’s surrounding environment,

the parser might even be able to fix it, and continue parsing the program.

For instance, the parser might encounter the sequence of the four tokens

〈dfe〉〈foo〉〈(〉〈)〉. The juxtaposition of two names is certainly a syntax error,

but what is the actual mistake? Here are some possibilities (along with the

corrected forms), from which the parser has to pick one:

• a missing assignment, i. e., dfe = foo() ,

• an extra space, i. e., dfefoo() ,

• a misspelled keyword, i. e., def foo() ,

• a missing comma or separator, i. e., dfe, foo() .

PhD-Thesis, Tobias Kohn, 2017

7.2. PREMISE 109

Now, the above sequence “dfe foo()” might be embedded into a structure as

follows:

dfe foo():
pass

By looking at this structure the parser can now infer that the most likely source

of the error is a misspelled “def”-statement (in a nutshell, any other hypoth-

esis would require more changes to yield a correct program, since only the

def-statement makes sense for the suite following it). For such an analysis,

however, we must assume that the direct environment of the syntax error is

correct and does not contain further syntax errors.

Hence, any program sent to the parser is assumed to fulfill the isolation

requirements for syntax errors:

1. For every syntax error, one can take out a connected part of the

entire program so that this part is a valid program and contains

exactly this and only this one syntax error.

2. In the given input program, any given name is misspelled at most

once.

Python’s program structure certainly facilitates the first requirement since al-

most every statement in itself already forms a valid Python program. In many

cases, we can thus read this requirement as there being only one syntax error

per line.

The second requirement means that we can look at the rest of the pro-

gram to decide whether “deffoo” or “dfe” are used anywhere else as proper

names. This would not work if, e. g., “dfefoo” was misspelled multiple times

as “dfe foo”. In short: any identifier appearing more than once is assumed

to be correct.

In practice, it turns out that the parser is often capable of handling a larger

density of errors. But we do not require the parser to correctly identify and

handle errors in such cases.

PhD-Thesis, Tobias Kohn, 2017

110 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

7.2.2 Standard Python

Python traditionally puts little emphasis on the handling of syntax errors.

Apart from indentation errors, a syntax error is usually reported whenever

Python cannot continue the parsing process, highlighting the “offending” sym-

bol that defies parsing. In various cases, however, the true problem is not at

the highlighted symbol, but located before.

We discuss an example program to illustrate how far typical error reporting

can be off. The actual error here is in line 1 with the missing closing paren-

thesis after the call to foo. Seen from the perspective of Python’s grammar,

however, the error is found (and in fact reported) in line 3 with the call to

“spam”. Depending on the actual structure of the program, the discrepancy

between the actual error and the reported position can be almost arbitrarily

far.

x = foo(
y = bar()
spam(x+y)

Without the closing parenthesis in line 1, Python’s parser interprets this code

segment as follows (the actually reported error can be seen in Fig. 7.1.):

x = foo(y = bar() spam(x+y)

Figure 7.1: Python 2.7.11 reports that the symbol “spam” is the source of the

syntax error.

In other words, the assignment to y is interpreted as a named argument to

the function foo. Even in this interpretation, the true error would be a miss-

ing comma or operator in front of spam. Anyway, there is nothing inherently

wrong about the symbol spam.

PhD-Thesis, Tobias Kohn, 2017

7.3. THE PARSING PROCESS 111

Python’s error reports are not only minimalistic, but can also be misleading.

How should a novice programmer recognize that, despite that fact that spam

was reported as erroneous, the actual problem and source of the error lies

elsewhere?

7.3 The Parsing Process

7.3.1 Overview

The process of parsing commonly involves two steps: the lexer accumulates

individual characters to form tokens. The parser then consumes these tokens

and creates the abstract syntax tree (AST) from it (Fig. 7.2).

Figure 7.2: The parsing process typically involves a lexer and the actual parser

to transform the input stream of characters into an abstract syntax tree (AST).

The parser presented here deviates from this model by an additional stage

inserted between the lexer and the actual parser. A preparser transforms the

stream of tokens coming from the lexer and presents the parser with a tree

of logical lines (Fig. 7.3, recall that a single logical line might be distributed

among several actual or physical lines). The tree’s structure actually repre-

sents the indentation levels of the lines. For instance, the lines that make up

the body of a compound statement (e. g., a loop) become child nodes to the

compound statement’s node.

PhD-Thesis, Tobias Kohn, 2017

112 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

Figure 7.3: Between the lexer and the parser, there is an additional preparser

that transforms the sequence of tokens into a tree of logical lines. Note, how

the character stream on the left stil lcontains 〈NEWLINE〉- and indentation-

tokens, whereas the tree of logical lines on the right has no need for these

tokens anymore.

Error Handling. Error handling is distributed among the different stages.

The lexer, the preparser, and the parser are all responsible for detecting, re-

porting and handling syntax errors.

On the level of the lexer, the isolation requirement for syntax errors al-

lows that any single character could have been deleted, inserted, changed, or

swapped with its immediate neighbor. There are, however, only very few cases

where the lexer can determine that a syntax error is present, find its cause and

source, and fix it. For instance, because of lacking context, the lexer could

not decide if a word such as “dfe” is meant to be an identifier or a misspelled

keyword “def”. The lexer can, however, detect and fix, e. g., unterminated

strings.

In order to build logical lines from the token stream, the preparser needs to

detect and handle indentation problems, as well as unmatched brackets and

parentheses.

For the parser, the isolation requirement for syntax errors basically means

that only a single token per line might be wrong. This includes cases such as

a deleted or inserted token, or even swapped tokens, when directly inherited

from swapped characters. The parser’s job is to identify the exact syntax error

PhD-Thesis, Tobias Kohn, 2017

7.3. THE PARSING PROCESS 113

or erroneous token, and, if possible, to correct it.

The purpose of correcting syntax errors is not, of course, to execute a faulty

program. The idea is rather that, if the parser can correct a program, it can

provide meaningful messages to the user. In addition, the abstract syntax

tree (AST) is used to construct a symbol table, which in turn is used to help

identifying other syntax errors.

7.3.2 Structure of Python Programs

The primary element to structure a Python program is indentation. According

to the Python specification [50], the lexer is supposed to keep track of current

indentation levels and then generate 〈INDENT〉- and 〈DEDENT〉-tokens to mark

the beginning and end of code blocks (“suites” in Python’s terminology, cf.

Section 3.4). Inside brackets and parentheses, however, all line breaks – and

accordingly also indentation – are ignored.

Now, consider the case of a missing closing/right parenthesis or bracket.

This leaves the lexer in the state of ignoring the primary structuring element

for the rest of the program. As seen from the parser, that entire rest seems to

occur on a single line (cf. Section 7.5). Finding a good point to fix the problem

and insert the missing bracket becomes virtually impossible for the parser.

Throwing away information so crucial as the indentation at that early stage

is not a viable option. The lexer must keep this information until such time

as it could establish that all brackets and parentheses were properly closed/-

matched.

Indeed, we have the lexer retain all line breaks and indentation. In ad-

dition, it also keeps track of parentheses and brackets during the scanning

process. In case of any unbalanced bracket, the lexer sets a flag indicating

that bracketing information is not reliable and must be fixed. The preparser

between the lexer and the parser reads that flag and tries to reconstruct the

correct structure of the program.

In the end, we want to pass on information about the program’s struc-

PhD-Thesis, Tobias Kohn, 2017

114 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

ture from the lexer to the parser. In particular, we want to present the parser

directly with logical lines instead of the 〈INDENT〉- and 〈DEDENT〉-tokens typ-

ically used in Python. The power of logical lines stems from the fact that each

logical line usually contains one statement. In addition, a logical line is self-

containing and can be completely parsed and executed on its own (this fact is

used, e. g., for the interactive console/REPL). That is, because statements are

separated by line breaks, we can quite reliably split the program into individ-

ual statements and have the parser operate on these statements. Should the

parsing of any one logical line fail, we get recovery for free, and the parser can

just continue on the next logical line/statement in the list.

In order to implement the idea of logical lines as a basis for the parser,

we insert a preparser between the lexer and the parser. It takes the stream of

tokens from the lexer, analyzes its structure and creates a tree with Python’s

logical lines as nodes. Each node has an associated list of the tokens that make

up the logical line, and can have a list of child nodes in case the statement has

a body (Fig. 7.4). Note that some statements, such as if/else, will still span

more than one logical line.

def sqr(x):
 y = x ** 2
 return y
print sqr(123)

def sqr...

y = x...

return y

print s...

Figure 7.4: Before parsing, a Python program is transformed into a tree with

logical lines as its nodes.

The parser is in a very comfortable situation. It can now look at each

logical line individually. Fixing errors becomes a local task. Recall that we

still assume that each individual line might contain a syntax error. But as we

deal with closed entities, we can use simple pattern matching and include tests

such as “has a colon at the end” or “has a suite”.

PhD-Thesis, Tobias Kohn, 2017

7.4. THE LEXER 115

7.3.3 Drawbacks of this Process: Changing the Grammar

Print: function versus statement. While “print” is a keyword for the print-

statement in Python 2, it has become a mere function and hence a name in

Python 3. Python 2, however, supports a special statement to change the

grammar and make “print” a function:

from __future__ import print_function

For one thing, this statement must be executed by the parser and not by the

runtime system. For another, at the time the parser encounters the statement,

the lexer has already created 〈print〉-tokens, which must then all be replaced

by respective 〈name〉-tokens.

Another alternative to approach this is, of course, that the lexer itself looks

out for future-imports at the beginning of the module.

7.4 The Lexer

Most modern programming languages share a common and established set

of lexical rules with only slight variations. Python is no exception here, and

creating tokens from the input characters is a straightforward task.

In accordance with the Python specification, the lexer reports an error in

case of invalid input characters (in a German speaking region this is of some

importance as non-Ascii characters are frequently used). In a number of ad-

ditional cases, the lexer can also report an error, fix the problem and still

generate valid tokens. The two interesting cases are string literals and multi-

character operators, as discussed further below.

7.4.1 Symbol Table and Brackets

The lexer not only tokenizes the input program. It also keeps tally of all

names/identifiers in the program and checks the input for possible problems

regarding brackets and parentheses.

PhD-Thesis, Tobias Kohn, 2017

116 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

Symbol table. During its tokenizing process, the lexer creates a simple sym-

bol table, keeping track of how often any name occurs within the source pro-

gram. This information is later accessed and used by the parser to handle

misspelled names and keywords.

Consider, for example, two adjacent identifiers such as “first value”.

Two identifiers can never stand together, so this is clearly a syntax error. How-

ever, the parser has various alternatives how to fix it:

(A) form a single word: firstvalue or firstValue

(B) insert an underline: first_value

(C) insert a dot: first.value

(D) insert a comma: first, value

(E) insert an operator: first + value

In general, the parser cannot distinguish between variants (D) and (E) (apart,

of course, from some special cases). However, using the lexer’s symbol table

the parser can see how often the names “first”, “value” and “firstvalue”

occur in the source program and base its decision for an alternative on these

frequencies. This statistical approach does not always work, though, and

might even choose the wrong alternative.

The advantage of this symbol table in the lexer comes from the fact that

the lexer has already scanned the entire source code before the parser starts

its work. Hence, the symbol table provides a global view with respect to the

occurring names. On the other hand, imports are not taken into consideration.

This means that the lexer’s symbol table does not suffice for performing a

statical analysis of names.

Brackets. In addition to the symbol table, the lexer keeps track of paren-

theses and brackets using a stack. This way, unmatched brackets are already

discovered during the tokenization of the source program. The lexer, however,

PhD-Thesis, Tobias Kohn, 2017

7.4. THE LEXER 117

does not attempt to fix any problem with brackets but sets a flag indicating

that brackets are not balanced. Later on, the preparser will take on the re-

sponsibility to identify and, if possible, fix bracket-related problems. A more

detailed discussion follows in Section 7.5.

7.4.2 String Literals

Like parentheses, string literals might be missing the proper closing or termi-

nating character. In difference to parentheses, this is quickly detected because

a string literal is not allowed to contain line breaks (except, of course, for

multi-line string literals in triple quotation marks). The question is where to

insert the missing closing delimiter.

In general, it is not possible to reliably find the exact extent of the string

literal if one of the delimiters is missing. The error is, however, clear enough

so that even novice programmers quickly know how to fix it – especially with

the aid of modern editors, which highlight string literals in color. Still, we can

do a little better than just insert the missing delimiter at the end of the line.

String literals are very often part of an expression, i. e., they are embedded

in function calls (as arguments) or part of a list or dictionary (in Python’s

standard library, string literals are immediately followed by a closing bracket in

21.8% of 40 777 cases). This is important with respect to our goal of producing

a sequence of valid tokens. The lexer should insert the closing delimiter so

that, ideally, the program can be parsed without further syntax errors.

For instance, consider the example

if s.startsWith("abc):
pass

If the lexer places the string delimiter at the end of the line, the parser will

later on report a missing parenthesis and colon – even though they are actually

present.

Before placing the closing string delimiter, the lexer checks for a colon

and any closing parentheses or brackets that would match the current bracket

PhD-Thesis, Tobias Kohn, 2017

118 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

stack. With relative ease, the lexer can thus restore basic structural informa-

tion.

7.4.3 Operators

Compared to keywords and names, operators tolerate very little errors before

they become unrecognizable. In other words: there are only very few cases

where the lexer can fix a syntactically incorrect operator symbol. Fortunately,

these cases include some of the errors students are more likely to make.

During our classroom sessions, we observed that some students put a space

in the middle of operators with two characters, as, e. g., the double equal sign

“==” used for comparisons. A second error we could observe quite frequently

was the swapping of the two characters and writing, e. g., “=*” instead of “*=”.

While the lexer can easily detect two single equal signs separated by a white

space and remove the extra white space, the second case is harder to correct.

The problem arises when “x=-1” might be either “x -= 1” or “x = -1”.

In fact, we decided to only correct clearly invalid cases, i. e., the lexer

interprets even “x =- 1” with an extra space between the minus and the digit

as the assignment of −1 to x. The only violation of this rule is “=*”. The star

could belong to the following expression as an unpacking operator. But if the

expression is a number, there is nothing to unpack and the syntax would be

illegal. Hence, “x =* 2” is corrected to “x *= 2”.

7.5 Brackets and Parentheses

Brackets and parentheses not only play a crucial role during parsing but are

also a frequent source of errors. One of the most common syntax errors in

that regard is a wrong number of closing parentheses, including having none

when one is actually required. Particularly in case of nested function calls or

complex mathematical formulae, closing all parentheses correctly is difficult.

PhD-Thesis, Tobias Kohn, 2017

7.5. BRACKETS AND PARENTHESES 119

The importance of brackets and parentheses stems from the fact that they

directly influence the structure of the source code. Brackets even establish

contexts relevant for parsing. In Python, for instance, statements cannot occur

inside brackets, and symbols such as the assignment operator ‘=’ or the colon

‘:’ change in fact their meaning. In particular, line breaks and indentation are

ignored inside brackets while playing a pivotal role outside to structure the

program code.

Simply detecting bracket-related syntax errors seems easy at first: we just

need to keep track of currently open brackets, for instance using a stack, and

check whether a closing bracket matches the opening bracket on top of the

stack. The problem arises if we want to correct missing or mismatched brack-

ets, or even determine the exact kind of error: in many cases it can be very

hard to determine if, for instance, a closing bracket does not match the open-

ing counterpart because the opening bracket is missing or swapped with an-

other closing bracket.

The parser uses line breaks as synchronizing tokens after an error. Hence,

if the parser cannot recover while parsing a given statement, it resumes pars-

ing the subsequent statement. Due to the fact that new lines are ignored inside

brackets and parentheses, the parser must fix bracketing problems, and recon-

struct the actual structure of the program code as well as possible or abandon

further parsing altogether.

7.5.1 Goals

Ideally, the parser would be able to point out the exact location where a miss-

ing bracket must be inserted or an extra bracket deleted. It would also cor-

rectly report if a bracket is in the wrong place and find the correct location for

it. Due to the inherent ambiguity of erroneous code, however, there is always

an uncertainty about the presented solution to fix the problem.

When looking at data of novice programmers’ mistakes, we find that a

missing closing parenthesis is among the most common syntax errors (e. g.,

PhD-Thesis, Tobias Kohn, 2017

120 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

[1, 12, 24, 27, 58], – the actual data is for Java, but this error directly ap-

plies to Python as well). As shown above (Section 7.2.2), this error is also

poorly reported by standard Python. The first goal is hence that the parser de-

tects all missing closing parentheses, and either finds a reasonable and good

choice where to put the missing closing parenthesis, or reports that the open-

ing parenthesis has no matching counterpart.

As the brackets and parentheses highly influence a program’s structure,

the parser should be capable of restoring the basic structure even in the case

of malformed bracketing. That is, after un- or mismatched brackets, it must

recover as soon as possible to continue the parsing of the remaining program

code in a meaningful way.

7.5.2 Combinations of Brackets and Other Tokens

We already know that some combinations of tokens are invalid. For instance,

an opening curly brace can never follow a name token. On the other hand,

parentheses very often follow a name token. Hence, a statistical analysis of

how brackets and parentheses are actually used might help to decide, in case

of a syntax error, which of various options is more likely to be the correct one.

We used Python’s standard library to accumulate the information about

the usage of parentheses. The rationale behind this choice is that each Python

module is also a valid program, and that there are currently no large collec-

tions of samples from novice programmers available. In total, 205 files were

analyzed, making up around 4 MB of text data. For each bracket token, the

immediately preceding and the immediately following tokens were counted.

Results. With almost 70 000 opening and closing parentheses, they certainly

make up the largest group. Interestingly, in more than 90 % of all cases, the

opening parenthesis directly follows a name, i. e., constituting a call. This is

further supported by noting that closing parentheses are much more likely to

be directly adjacent to another closing parenthesis than their opening counter-

PhD-Thesis, Tobias Kohn, 2017

7.5. BRACKETS AND PARENTHESES 121

parts (7 % vs. 1 %), indicating structures such as, e. g., “foo(bar())”. Around

14 % of the parentheses are actually empty and half of the closing parentheses

are followed by a linebreak.

Square brackets are still very likely to directly follow a name with more

than 70 %. In total, square brackets are used in about 80 % of the cases to

access a sequence’s element with the remaining 20 % to directly define a list.

Since indexed access cannot be empty, we find that half of all lists directly

defined in Python are actually empty.

Curly braces are much less frequent with less than 1000 occurrences. This

is, however, not surprising when compared to the fact that the large bulk of

used brackets and parentheses constitute in calling and accessing elements

while curly braces are only used to define literal dictionaries and sets. Of

these, even 75 % are actually empty. For later uses, it is also noteworthy that

curly braces are frequently enclosed by parentheses but that in less than 1 %

does a parenthesis occur directly inside curly braces.

Each table below lists the four most frequent tokens preceding and fol-

lowing an opening or closing parenthesis or bracket, respectively. Reading

example: the token in front of a opening parenthesis is in 90.5 % of all cases a

〈name〉 and in 1.5 % the modulo-operator 〈%〉. The closing parenthesis is only

preceded by a 〈name〉 in 54.5 % and followed by a 〈newline〉 (abbreviated in

the table as 〈nl〉) in 52.5 % of all cases.

Parentheses. N = 68352

〈name〉 % = ((〈name〉) 〈str〉 〈int〉
90.5 % 1.5 % 1.1 % 1.0 % 66.8 % 14.1 % 12.5 % 3.0 %

〈name〉 (〈str〉)) 〈nl〉 :) ,

54.5 % 14.1 % 11.3 % 7.1 % 52.2 % 27.7 % 7.1 % 3.5 %

PhD-Thesis, Tobias Kohn, 2017

122 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

Square brackets. N = 13472

〈name〉 =)] [〈name〉 〈int〉] 〈str〉
72.5 % 15.8 % 4.2 % 2.0 % 38.8 % 26.0 % 10.0 % 9.6 %

〈int〉 〈name〉 [:] 〈nl〉 =) ,

33.3 % 32.5 % 10.0 % 9.6 % 40.9 % 14.3 % 12.3 % 8.0 %

Curly braces. N = 981

= , (: { } 〈nl〉 〈str〉 〈name〉
83.3 % 7.7 % 3.5 % 1.6 % 75.3 % 12.0 % 10.4 % 1.0 %

{ 〈nl〉 〈str〉 〈name〉 } 〈nl〉) , [

75.3 % 12.8 % 4.1 % 3.5 % 80.2 % 9.4 % 9.0 % 0.8 %

7.5.3 Detecting Errors

The lexer keeps track of brackets and parentheses while scanning the source

program. Using a stack, it detects if a closing bracket does not match the

current opening bracket. After having scanned the entire document, it then

checks whether the stack is empty, that is, all brackets have been properly

closed. If any mismatch is detected, the lexer stops keeping track of brackets

and sets a flag to indicate that the bracketing is erroneous.

There is a dedicated phase in the parsing process to fix brackets and restore

the structure of the source code. This phase is only applied in case the lexer

has found mismatched brackets.

The “bracket fixing”-phase of the parser first creates a list of all brack-

ets and parentheses in the source program. The algorithm then searches for

matching brackets in the list and removes them, analogous to how we would

resolve parentheses in mathematical formulae. Once the parser has no fur-

ther matching pairs to remove, it investigates the remaining patterns, tries to

resolve mismatches and resumes removing matching pairs.

PhD-Thesis, Tobias Kohn, 2017

7.5. BRACKETS AND PARENTHESES 123

Swapped brackets. We first discuss the case of both opening and closing

brackets remaining. Then there is a first closing bracket, which does not

match a preceding opening bracket. By looking at the surrounding brackets

it is possible to detect the case of two brackets having been swapped, as, for

instance, the two closing brackets in “(...[...)]”. In order to be recognized

as swapped brackets, the two tokens must be directly adjacent to each other.

There are several heuristics to guide the parser in cases where both the

opening and the closing brackets could have been swapped.

• Curly braces never follow a name whereas parentheses and square brack-

ets are often preceded by name.

• We assume that lists and tuples tend to be homogeneous. If the contents

of the outer brackets (ranging from the first opening to the second clos-

ing bracket) is part of a list or tuple, we can check if other elements are

in brackets or parentheses as well and try to match them.

• It is unlikely for curly braces to contain one single further expression in

parentheses. Curly braces are often used for dictionaries – in which case

the contents cannot be completely in parentheses or brackets. Hence,

an expression of the form {(...)} would have to be a set with exactly

one entry. Even though this is just a statistical guess, the parser swaps

brackets in such a way that curly braces end up at the inside with other

parentheses or brackets surrounding them.

If, eventually, the parser still cannot decide and statistics is no help, it swaps

the closing brackets. Here, we just assume that a programmer puts more care

on opening brackets than on closing them.

Mismatched brackets. When swapping brackets fails, the parser must look

at the two mismatched brackets in isolation. It still takes the surroundings into

account and, by counting opening and closing brackets, it makes sure that the

PhD-Thesis, Tobias Kohn, 2017

124 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

problem is indeed one of mismatched brackets and not one of an extra or

missing bracket in the middle (discussion in the next paragraph below).

Mismatched parentheses and brackets are resolved by assimilating the two

brackets. We assume that either the opening or the closing bracket is correct

and the respective other needs to be adapted. The parser’s problem is to decide

which one of the two brackets is the correct one.

Analogous to the problem of swapped brackets, the parser uses some heuris-

tics and rules derived from the grammar to decide for one of the available

options.

• As before, curly braces cannot follow a name, while parentheses and

square brackets often do. Thus, if the opening bracket is preceded by a

name, the parser can rule out curly braces.

• In contrast to curly braces, square brackets and parentheses cannot con-

tain colons. To test this, however, care must be taken because the brack-

ets in question might enclose a valid dictionary.

• The statements def and class require parentheses after the name. The

statement del, on the other hand, can be used to delete either variables

or elements of a sequence, for which square brackets are used.

• If the brackets span everything between an if or while until a colon,

they must be parentheses enclosing the test expression.

• The operator in is most likely followed by a list, which uses square brack-

ets.

Single brackets. There is some extra information available if the single open-

ing or closing bracket is enclosed in surrounding, matching brackets or paren-

theses. In that case, the parser can limit the search for a possible matching

location to the interior of the surrounding brackets.

As long as the tokens are surrounded by other brackets, finding the cor-

rect action to repair the program code is not as important. Independent of

PhD-Thesis, Tobias Kohn, 2017

7.6. THE PARSER 125

the chosen option, line breaks and indentation is still masked between the

surrounding brackets.

For a missing closing bracket, this can be as simple as inserting the missing

bracket in front of the surrounding closing bracket. The parser has the ten-

dency to insert a missing closing bracket and delete an extra closing bracket.

To find the location for a missing opening square bracket or parenthesis,

the parser looks for an invalid combination of two tokens that would allow

for the opening bracket to be inserted. For instance, two name tokens cannot

be directly adjacent to each other in Python. However, name tokens are often

followed by square brackets or parentheses and can act as first token in an

expression.

7.6 The Parser

Starting point for our implementation is a simple LL(1)-parser based on Python’s

grammar. Implementing this LL(1)-parser by hand is a laborious task, but later

on it allows us to modify it at will and include cases for error recognition and

correction. We use Python’s own standard library as a test suite for the parser

before we start to make any modifications.

Even our very simple implementation is capable of reporting a few errors

with more accuracy than just “syntax error”. Whenever we expect a very spe-

cific symbol such as the colon at the end of “if” and “def”, the parser can

report an error of the form: “〈token1〉 required but 〈token2〉 found”. In case of

any other error it reports a “no viable alternative at 〈token〉” (this is more or

less what Jython offers out of the box).

The goal of all subsequent modifications is to replace the generic messages

by more specific error messages. In particular, the “no viable alternative at

〈token〉” should be completely eliminated since it does little to help a novice

correct the program.

PhD-Thesis, Tobias Kohn, 2017

126 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

7.6.1 Recognizing Structural Errors

The parser receives its input in form of a token tree. The preparser makes sure

that each logical line is represented by a node in the tree so that the parser

can basically parse each logical line separately. The exception to that rule are

compound statements with multiple branches. An if-else-statements spans two

logical lines and hence two nodes: one for the if-part and one for the else-part.

Else without if. In a list of nodes (logical lines), the parser first looks for

statements spanning more than one line, most notably else-statements, and

tries to group these nodes for further parsing. This becomes interesting once

the parser detects an “else without if”.

Placing the “else” at the correct position is difficult for novices. We first

noticed this problem in an earlier Java class (we used Java as a teaching lan-

guage before switching to Python). A student wrote:

if (x >= 0) {
println(math.sqrt(x));
else
println("There is no square root");

}

This pattern later occurred in Python classes as well:

if x >= 0:
print math.sqrt(x)
else:
print "There is no square root"

When asked about their code, the students explained that since the “else” is

part of the “if”-statement it must be placed into its body.

Reporting the error “else without if” is confusing in such a situation be-

cause the “if” is clearly present. In Python’s terminology the problem is not a

missing “if” but a wrong indentation of the “else”.

How should the parser detect and react to a lonely “else” then? It must

check if the parent-node in the tree is an if-statement and report that the

“else” must be dedented to match the “if”.

PhD-Thesis, Tobias Kohn, 2017

7.6. THE PARSER 127

Else with condition. A second misconception about “else” the parser must

watch out for is the notion that the “else” requires or allows for a condition

just as “if” itself (this might be a problem of non-native speakers, though,

who are not familiar with “else” as an English word). Some students even

had several “else”-statements for a single “if” to form a multi-branch. By

giving specific error messages the parser is able to help students correct their

programs and learn how conditional statements must be formed correctly at

the same time.

The idea of multiple “else”-branches attached to a single “if” might look

as follows. Here, each “else” also received a condition to test for on its own.

if x > 0:
...

else x == 0:
...

else x < 0:
...

In such a case, we expect the parser to recognize the condition given between

the “else” and the colon and point out that “else” does not allow for such a

condition to be placed after the “else”. Ideally, the parser could even suggest

using “elif” as an alternative here.

How other parsers handle an else with condition. CPython only reports a

“syntax error” after the “else”, which does nothing to help the student. Jython

offers some better error handling but in this case it might lead a student into

a completely wrong direction.

While the syntax else x > 0: is clearly wrong in Python, else: x > 0

is actually legal. Upon encountering the else with condition, Jython hence

writes that the colon is expected after the “else”. A student who would write

the following program is therefore implicitly asked to move the colon in line 3.

if x > 0:
print "Positive"

else x < 0:
print "Negative"

PhD-Thesis, Tobias Kohn, 2017

128 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

Jython’s actual error messages reads:

mismatched input ’x’ expecting COLON.

A further error indicating that the print-statement in line 4 seems to be

wrong could eventually lead to a “corrected” version like the following:

if x < 0:
print "Negative"

else: x > 0
print "Positive"

Even though this program is syntactically correct Python code, it clearly does

not express the intention of the programmer. It is therefore well worth to have

the parser be extra vigilant and watch out for common patterns of students’

misconceptions.

The data (programs and error messages) we have collected includes some

instances where, indeed, students struggled with the correct placement of

colons (cf. Chapter 8).

7.6.2 Misspelled Keywords

Initial keywords. Most statement types in Python can be identified by their

initial or leading keyword. The parser can thus unambiguously determine

the structure of the statement that follows an initial keyword. The keyword

“def”, for instance, is enough to inform the parser to expect the pattern:

〈def〉〈name〉〈(〉〈arg-list〉〈)〉〈:〉〈suite〉. However, if this initial keyword is mis-

spelled, it can be difficult for the parser to figure out what statement or struc-

ture to expect.

Hence, how can the parser actually discern a misspelled keyword? What

happens with the parsing process if the initial keyword is replaced by a 〈name〉-
token?

As the underlying LL(1)-parser, which we have used as a basis, heavily

relies on the initial keyword to select the statement, a misspelled keyword

makes it impossible to continue correct parsing. In fact, a misspelled key-

word becomes a 〈name〉-token, so the parser expects either an expression or

PhD-Thesis, Tobias Kohn, 2017

7.6. THE PARSER 129

an assignment and will treat the input accordingly (there are some exceptions

of where the misspelled keyword transforms into another keyword, e. g., def

and del).

First, in order for a 〈name〉-token to be accepted as a misspelled keyword,

either the Damerau-Levenshtein ([10]) distance between the name and the

keyword must be at most 1, or the name and keyword must differ only in

case.

Second, the parser must have a clear indication that the statement in ques-

tion is neither an expression nor an assignment. One such indication might be

a colon at the end of the line and a suite attached to the line-node. Another

indication is that the parsing process will not consume all tokens on the line.

Looking at the follow sets of both 〈name〉 and possible initial keywords

(such as 〈if〉, 〈def〉, etc.), we find:

FOLLOW(〈name〉) ∩ FOLLOW(〈keyword〉) = {+,−, (, [}

This means that the parsing process will only continue after the initial 〈name〉-
token if any of the above four tokens is present. In the end, this leaves very

few cases where the parser is not able to detect a misspelled keyword.

For instance, a misspelled “print” in print(1, 2) would go unnoticed

– at least until the runtime system throws an exception because of an unrec-

ognized name.

But most importantly, the parser can discern misspelled initial keywords

quite reliably whenever the keyword determines the structure to follow.

Other keywords. This leaves us with keywords that appear inside state-

ments and expressions, but not in an initial position. These include:

〈and〉, 〈or〉, 〈in〉, 〈as〉, 〈if〉, 〈else〉, 〈for〉

Once again, we assume that such a keyword is misspelled and the lexer pro-

duced a 〈name〉-token instead. How should the parser now discern any of

these keywords?

PhD-Thesis, Tobias Kohn, 2017

130 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

All these keywords must directly follow an expression (or a subset of it,

such as the 〈as〉 following a name). We therefore look at the follow set of

expressions and find:

〈name〉 6∈ FOLLOW(〈expr〉)

Hence, the parser can quite safely test for misspelled keywords in cases when-

ever an unexpected name occurs. However, an unexpected name must not

necessarily be a misspelled keyword (it could also be due to a forgotten op-

erator or comma, for instance). To decide that a name is indeed a misspelled

keyword, the parser must also take the context into consideration and look at

further tokens on the line. For instance, 〈if〉must be followed by an expression

and a subsequent 〈else〉 (note that an 〈if〉 which is not in initial position is part

of the if-expression, not the if-statement).

Ambiguous cases. There are still several ambiguous cases. In particular, the

collected data (cf. Chapter 8) shows that the improper statement def square()

occurs in two situations. In some of the cases, the students seem to have

started giving a definition for the function, but did not finish. In other cases,

the function was already present in the program, and the statement was obvi-

ously intended to call the function.

7.7 Static Analysis

The static analyzer works on the AST and serves two purposes: it creates

an extensive symbol table to assist the parser in case of syntax errors, and it

checks the program for additional errors not caught by the parser so far.

In practice, the static analysis turned out to also work well as a system for

auto completion and the display of documentation for any given function.

The goal of the static analyzer is twofold. First, it extends the error check-

ing done in the lexer and parser so as to capture errors beyond mere syntax

errors. Second, it recreates an image of all the objects, variables and fields

PhD-Thesis, Tobias Kohn, 2017

7.7. STATIC ANALYSIS 131

used in the program. Ideally, it can then give basic information such as type

for any given name at a specific position. This is used in the parser as described

below.

Using type information in the parser. A frequent error of novice program-

mers is the omission of parentheses after a function’s name to properly form a

call. Just writing a name as a statement is legal in Python, but in the case of

students it is safe to consider it an error.

The parser is capable of detecting such lonely names as statement without

side effects. And it will properly report that the given statement is useless.

In classroom, however, we observed that students did not understand what

exactly was wrong with the code. The parser actually needs to report that

the name must be completed with parentheses to form a valid call. Yet, such

a message would be wrong unless the name really is a function. The parser

hence must check the name’s type and see if it indeed is callable.

Another error we want to capture concerns the incorrectly applied and-

operator. Some students write if a and b > 0 , meaning to say that both a

and b must be positive. On one hand, the parser should correct this and report

that a and b must both be tested individually. On the other hand, the above

test makes complete sense if a is a Boolean value. Hence, before reporting the

error, the parser must rule out that a could be a Boolean value.

These examples show why the parser indeed requires a static analyzer that

can provide type information for any given name.

7.7.1 Type System

Building a static analyzer for Python is not an easy task. Not only do vari-

ables not have a specific type, even the scope and lifetime of a variable can be

difficult to assess.

For this reason, the static analyzer pursues a pragmatic approach. Any

variable is considered alive in its entire scope (even reaching “backwards”).

PhD-Thesis, Tobias Kohn, 2017

132 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

Delete-statements are ignored. For any assignment to a variable the variable’s

type is the union of the current type with the new type. Hence, if, e. g., the two

statements “x = 1” and “x = 0.5” both occur referring to the same variable

x, x has type “numeric”, as the union of “integer” and “float”, for the entire

program code.

Objects: an example. Python is completely object-oriented in that each

value is represented by an object, including a “None”-object representing the

null-value (there are no “primitive” types as in Java that are not objects). Each

object has a dictionary associating names with their respective values (in most

cases the values are themselves just references to other objects).

Let us consider an example. In the following small code sample we define

a class Duck with a constructor __init__ and a method eat. Inside the con-

structor, we add the field food to the new instance. Further below an instance

duck is created and eats “123 food”.

class Duck:
def __init__(self):

self.food = 0
def eat(self, amount):

self.food += amount

duck = Duck()
duck.eat(123)
print duck.food

A simplified version of the objects involved here are depicted in Fig. 7.5 (for

instance, the “integer”-class actually has many more methods not shown here).

The statement duck.eat(123) prompts Python to find a field “eat” in

the duck-object. As the duck-object itself has no such field, its base class

Duck is searched where the field “eat” is indeed found. At that point, Python

checks if the object referenced by this field is actually a function and if so calls

that function with the eat-object as its first and the integer 123 as its second

argument.

PhD-Thesis, Tobias Kohn, 2017

7.7. STATIC ANALYSIS 133

code

locals
params

function
integer

__add__
value

duck

food
type

Duck

eat
__init__

Figure 7.5: In Python, all values are actually objects, each with its own dictio-

nary. While built-in objects have inaccessible private fields such as the value

of an integer-object (represented here by a dot), most fields can be read and

even written at will. When needed, new fields are automatically added to an

object.

Python allows us to directly manipulate most of the fields of an object.

We could, for instance, move the method from the class to the instance and

rename it to feed.

duck.feed = duck.eat
del Duck.eat

The first statement copies a reference to the method/function and the second

statement removes the reference from the Duck-class (it does not delete the

function object itself, though).

A static picture of dynamic objects. This highly dynamic nature of Python’s

objects makes it difficult to create an accurate representation of the objects,

its fields and values at any one time (without actually running the program,

that is). Whether, in the above example, the fields eat or feed are available

in the object duck depends on whether the additional lines with moving the

method from the class to the instance have been executed or not. And since the

original method eat has been deleted from the class itself, no other instance

of type Duck would have such a method.

These ideas are not just academic and theoretical in nature. Some modules

such as the official turtle-modules make indeed use of the dynamic nature and

reflection. In order to make all methods of an object available as ordinary

PhD-Thesis, Tobias Kohn, 2017

134 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

functions, they use code similar to the following (in reality the code is more

refined and takes parameters into consideration as well).

turtle = Turtle()
for name in methods(Turtle):

exec "def %s(x): turtle.%s(x)".format(name, name)

Instead of turtle.left(90) one can then just write left(90) . The func-

tion will automatically execute the method on the global turtle-object.

So, if we want to have an accurate picture of all names available in a pro-

gram, we would have to actually execute the program and the loaded modules.

This, however, is not an option for several reasons. Besides unwanted side ef-

fects stemming from executing imported modules, we clearly cannot execute

the code we are in the process of parsing. This leaves us with the slightly

unsatisfactory state that, without an enormous effort to consider all possible

dynamic cases, the parser cannot be sure if a certain name does exist at any

one location in the source code. In essence: the static picture we draw of the

objects and types involved can only be approximate.

7.7.2 Discussion

From the perspective of the parser, the lifetimes of variables and functions are

a complex issue. Reasoning about the existence, non-existence or the type

of any name in the program is, in general, not possible. The parser therefore

assumes that any object is alive from the moment of its definition until the end

of its containing scope. At least in the case of novice programmers’ program

this is certainly a reasonable assumption.

Providing information about an error. Two examples of errors where the

parser uses static analysis to establish the existence of a function are (a)

set color() and (b) forward 90 .

In the first case, set color() , the parser must decide whether the two

names “set” and “color” could be combined to one identifier. For that, the

PhD-Thesis, Tobias Kohn, 2017

7.7. STATIC ANALYSIS 135

parser needs to know if there is a function called “setColor”, for instance (ac-

tually, the parser tries several combinations, including also, e. g., set_color).

In the second case, forward 90 , if “forward” is an actual function, the

parser proposes to put the argument into parentheses to yield forward(90) .

Otherwise, i. e., if the static analyzer cannot find a function with the given

name, the parser assumes in both cases, that there is a comma or assignment

missing.

Name- and type-errors. The above discussion should also make it clear why

two of the most frequent and typical errors (cf. Section 6.2) are not syntax er-

rors in Python but rather runtime errors: “name not found” and “wrong number

of arguments”. Both depend on the current state of the program.

PhD-Thesis, Tobias Kohn, 2017

136 CHAPTER 7. PARSING PYTHON-PROGRAMS OF NOVICE PROGRAMMERS

PhD-Thesis, Tobias Kohn, 2017

Chapter 8

Experimental Results from

Parsing Python Programs

8.1 Introduction

This chapter presents and discusses data we have collected over the course of

two months. Users of the environment TigerJython had the option to send us

their programs and error messages in an anonymized form. Judging from oral

feedback, we can assume that at least three high schools asked their students

if they would be willing to participate, and enable the sending of programs

and error messages. Because of the anonymity of the submissions, we can not

assess how many students (or users, respectively) actually participated.

The main question to answer in the course of this chapter is: do the pro-

duced error messages really fit the problems encountered in the students’ pro-

grams? How close does the parser come to giving specific and possibly helpful

feedback?

PhD-Thesis, Tobias Kohn, 2017

138 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

8.1.1 Theses

In the course of this chapter, we are going to provide support for one of our

theses:

Thesis 3. The parser can correctly identify and report at least 75 % of syntax

errors that are made by high school novice programmers in Python.

8.1.2 Organization

Section 8.3 presents the data collected as part of this study. In addition, it

discusses several special cases, including those that gave rise to specific im-

provements.

Section 8.4 discusses to what extent the produced error messages might be

helpful to the students. In particular, we argue that assessing the effectiveness

of error messages is a complex task, and beyond the scope of this dissertation.

Finally, in Section 8.5, we conclude that our parser does meet the require-

ments to fulfill Thesis 3.

8.2 Methodology

To assess the quality of our work, we started to collect programs and their

error messages directly from the students using it. Our educational Python en-

vironment TigerJython offers the choice to participate in this study by sending

the respective data anonymously to our server in Switzerland.

Some of the received data turned out to be invalid because of transmis-

sion problems – sometimes we did not receive the entire programs, or even

just error messages without any program to assign it to. For our study, we

only considered error messages with an underlying program and a valid error

position within that program.

PhD-Thesis, Tobias Kohn, 2017

8.2. METHODOLOGY 139

Since our interest is with the parser and its performance, we also filtered

out all runtime error messages. They were produced directly by the Python

interpreter itself and not by our parser. In addition, we removed all error

messages that were produced by Python’s parser. Those that were in our data

set seem to have come from participants who disabled the extended parser

discussed in this thesis. Accordingly, we could not gain any information about

our parser from them.

For each of the remaining error messages, we then looked at the message,

compared it with the associated program code and decided if the message (a)

accurately described the problem, (b) was technically correct but not neces-

sarily helpful, or (c) completely wrong.

The data was collected in two tiers, each with a window of about a month.

After the first tier, we looked at the data and made small improvements to

the parser so as to better handle cases that were not entirely correct. We

then published the updated version of the parser (as part of the TigerJython-

environment), and collected again data for more or less the same period of

time.

Anonymization. Before any program is sent to our servers, all string literals

are blacked out using the letter “x”. That is, the length of the string literals is

preserved but all letters are replaced by “x”. Numbers just retain their first and

last digit with all other digits set to “0”, and comments are replaced entirely

by the comment character “#”. It is important for our purposes to keep the

number of characters in the programs so that we can correctly assign error

messages to the correct locations within the program.

PhD-Thesis, Tobias Kohn, 2017

140 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

8.3 Collected Data

8.3.1 First Tier

We have collected data from at least three different high schools (based on oral

feedback from the respective teachers). Within one month (from August 26 to

September 27), we collected 6955 individual submissions with each submis-

sion being a program or an error. We counted a total of 916 error messages

in these submissions. 235 submissions could be attributed to the “name not

found” error.

Some of the submissions were corrupted, and did not contain all necessary

data for the analysis. In some cases an error message was produced repeatedly

for the same program, i. e., without any change to the underlying program. We

counted such repeated submissions only as one instance.

We used a program to automatically filter these submissions and only show

those with fully valid error messages and fitting programs. This resulted in

387 valid error messages that were produced by our parser.

After manually going through the 387 valid error messages, we found

5 cases that were completely incorrect and 71 cases where the error mes-

sages were technically correct, but did probably not address the actual prob-

lem (hence, we deemed abuot 80 % of the error messages to fit the students’

problems). The following paragraphs discuss some of these cases.

Technically correct but not helpful. Technically correct but not helpful mes-

sages included the cases of generic error messages such as “no viable alterna-

tive”. Such an error message is clearly no more specific than what standard

Python compilers already offer. Further examples of this category are given

below (we took the liberty of slightly simplifying and shortening some of the

examples for better clarity).

• You cannot assign something to ’var aa’.

var aa = input(a)

PhD-Thesis, Tobias Kohn, 2017

8.3. COLLECTED DATA 141

The student obviously brings prior programming knowledge from an-

other language such as JavaScript. The parser could inform the student

that Python does not require the “var”-keyword.

Interestingly, after the error message the student tried the “var aa”

without the assignment, which led to the error message “missing assign-

ment.”. This message, of course, refers to the idea of writing “var = aa”,

but the student probably understood it differently.

• There is a name required here.

myList = [’abc’.’abc’, ’abc’]

The error message is reported because the dot after the first string literal

indicates that the name of a field should follow. In this case, however,

the actual error is rather a typing error where the dot should have been

a comma instead.

• A double equal sign ’==’ is required here.

while inputValue = input(’’):
myList.append(inputValue)

Again, the student seems to come with prior programming knowledge

from another language. It was obviously not the intention of the student

to compare the variable “inputValue” with the new value entered by

the user. Yet, the error message might be close enough so as to inform

the programmer that Python does not support assignments in tests.

• ’:’ required but ’(’ found.

def square(s)():
...

Instead of telling the student that a colon is required the parser should

actually see the colon and report that the second set of parentheses is

superfluous and must be removed.

PhD-Thesis, Tobias Kohn, 2017

142 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

• There is/are extra token(s): ’h:’.

print hours "h:", minutes, "m"

The actual error here is the missing comma and not the extra string lit-

eral. This is actually one of the hardest situations to correctly identify

because the correct alternative strongly depends on the context and in-

tentions of the programmer. In principle it would also be possible to

insert an operator between the two tokens “hours” and “"h:"”.

• There is a comma missing.

setPenColor(sky blue)

The error here is, of course, not a missing comma but rather missing

quotation marks. “sky blue” should be a string literal in this case.

Not correctly identified. The five cases of not correctly identified problems

can be represented by three examples. The first example with the invalid for-

statement was submitted in total three times with slightly different versions.

• Colon required but ’==’ found.

for v==1:
print 1

This for-statement is not missing the colon but rather the keyword “in”

after the variable.

• There is/are extra token(s): ’{’.

n = 4
switch(n) {
case 0:
printf("Abc");
break;

case 1:
...

}

PhD-Thesis, Tobias Kohn, 2017

8.3. COLLECTED DATA 143

This is another instance of code from another programming language

directly copied into the Python environment. The parser could detect

this pattern and report that Python does not have a switch-statement.

• Unexpected symbol: ’or’.

or code in inputCodes:
output.append(f(code))

During the construction of the parser we assumed that a misspelled key-

word would result in a 〈name〉-token. In this case, however, the mis-

spelled 〈for〉-token became another keyword 〈or〉 and hence was not dis-

covered by the parser. Even though the data shows that the students

quickly understood and fixed the problem, the parser should be able to

correctly detect this error.

8.3.2 Second Tier

Our second window for collecting data was open slightly more than a month

(from September 30 to November 10), due to school holidays in October. We

collected a total of 7639 submissions, including 1611 error messages. 605 of

these error messages were runtime errors from the Python interpreter. We

could attribute 406 runtime errors to the “name not found” error.

After an automatic filtering of invalid and repeated error messages as be-

fore, we were left with 475 submissions (cf. Section 8.3.1). We found that the

provided error messages matched the problem in about 80%, or 396 of these

cases. A detailed account of all 475 cases can be found below.

Accurately describes the problem 396 83.2%

Technically correct but not helpful 41 8.6%

Not correctly identified 39 8.2%

Total 475 100.0%

While classifying the submissions we noted that not all students participating

in the study seemed to have used the latest version of the parser. In fact,

PhD-Thesis, Tobias Kohn, 2017

144 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

one school confirmed that it would not update any computer program in mid-

semester. Accordingly, we cannot reliably assess the improvements made to

the parser.

For instance, in 17 cases the submission recorded the error message “This

statement is useless: it has no effect” when, in fact, a name was missing paren-

theses. The improved version of the parser, however, would report “To call a

function you must add parentheses even when they are empty”.

Detailed account of the analyzed submission. For each reported error mes-

sage, we give the number of correctly identified error instances, and, where

appropriate, further details about the recorded instances. In addition, we also

describe cases of where the reported error would not match the true problem

found in the program.

All submissions were already anonymized as far as possible. In order to

keep all instances completely anonymous, we decided to limit the examples to

single lines. Furthermore, we changed all identifiers to generic names such as

“square”.

• A colon ’:’ is required here.

37 correctly identified. In 16 instances the colon was missing after an

otherwise correct repeat-statement, in 21 instances after an otherwise

correct def-statement.

In one instance the reported error was technically correct, but it did

probably not address the real problem: repeat left(90) .

• There is/are extra token(s): ’X’.

22 correctly identified, 6 instances were clearly wrong, 23 instances were

technically correctly identified, but did not address the problem.

In 10 instances the parser correctly reported an extra def as in, e. g.,

def square(100) . In 9 instances the student had added an extra

PhD-Thesis, Tobias Kohn, 2017

8.3. COLLECTED DATA 145

colon after an otherwise legal function call, e. g., forward(10): or

setPenColor:("red") . Another 3 instances were miscellaneous ex-

tra symbols as in, e. g., forward(=s) .

There were 23 instances of the parser incorrectly reporting an extra def

for inputs like, e. g., def square() . In constrast to the 10 correctly

identified instances above, the students seems not to have meant to call

the function, but rather define it.

In three instances, the parser reported an extra colon for repeat8: ,

which clearly is not correct. It should have reported a missing space be-

tween the repeat and the 8. Also incorrect is the same error for the input

defsquare(): . In a further incorrect instance, the parser reported the

extra import-keyword for the input fro, gturtle import * .

In a last case, the parser reported an extra from for the input

1 from gturtle import * . In this case, it is obviously the “1” at the

beginning of the line that is wrong, and stems from line numbers.

• Invalid definition of a function.

8 correctly identified. In 7 instances, the def-statement was incomplete,

i. e., def name . In one instance, the syntax was incorrect:

def square ":"() .

• This is an invalid name: ’X’.

29 correctly identified. All instances were function definitions with an

incorrect name. In 22 cases, the name contained an extra space, in one

case it started with a digit and in 6 cases it contained an invalid character

such as a German umlaut.

• There is a body or indentation missing.

82 correctly identified. 43 instances came from a repeat-statement

without proper body, the remaining 39 instances from a function defi-

nition without proper body.

PhD-Thesis, Tobias Kohn, 2017

146 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

• There is a comma missing.

Of the 32 instances, none seemed to completely catch the error. How-

ever, 22 instances should have resulted in better error messages.

In 17 instances, the parser should have reported an extra space as in,

e. g., make Turtle() . In four instances, several statements had been

written to a single line, requiring a semicolon (and not a comma as

indicated), e. g., penUp() forward(50) . In one instance, there were

missing parentheses, i. e., forward 90 .

The remaining ten instances were of different natures, including, e. g.,

setPenColor(light blue) , rep 4: , problem 2: , etc.

• There is a name required here.

10 correctly identified. In eight cases, there was a number given as

parameter, e. g., def name(123): . In one case, there was the name

of the function missing, and in one case the name was given as a string

literal: def ’xxx’: .

4 instances were not correctly identified. In these cases the colon was in

the wrong place, e. g., def: square .

• Parameter(s) required but ’:’ found.

14 correctly identified, e. g., def name: . Two instances were not cor-

rect: def square:() and def square,rotated(): .

• X required but Y found.

1 correctly identified, 1 incorrect error message.

The first instance was def square(); with the message, that a colon

would be required instead of the semicolon. In the second instance with

from, gturtle import * the parser should have reported an extra

token instead.

PhD-Thesis, Tobias Kohn, 2017

8.3. COLLECTED DATA 147

• The result of this expression is never used.

All four instances were incorrectly identified. In three cases, the student

had put a line number at the beginning of the line, e. g., 2 makeTurtle() .

This led the parser to insert an operator and then conclude that the re-

sult of that calculation would never be used. The final instance was a

simple typing error: square/() .

• This statement is useless: it has no effect.

19 correctly identified, 6 instances were technically correct, but did not

address the source of the error.

In 17 cases, the student had written a function’s name without paren-

theses, and in two cases a calculation like, e. g., 12/4 . The six final

instances were of the form repeat: 4 with swapped tokens.

• To call a function you must add parentheses even when they are

empty.

51 correctly identified, e. g., penUp .

• This import statement is incomplete.

12 correctly identified, in each case with a missing star at the end:

from gturtle import .

• There is a missing left bracket or parenthesis: ’(’.

3 correctly identified, e. g., left90) .

• There is an operator or comma missing.

4 correctly identified, e. g., forward(2xside) , dot(2d) .

• There is a closing bracket or parenthesis missing: ’)’.

28 correctly identified. In one additional case there was an extra opening

parenthesis instead: (forward(10) .

PhD-Thesis, Tobias Kohn, 2017

148 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

• There is a space missing.

3 correctly identified, all three with the repeat-statement: repeat4:

• Missing ’def’.

3 correctly identified of the form name(): with a subsequent body.

• Misspelled keyword ’X’ instead of ’Y’.

3 correctly identified: gdef, ddef instead of def, and repea5t instead

of repeat.

• These tokens seem to be swapped: ’:’ and ’2’.

1 correctly identified: repeat: 2

• This string is unterminated.

6 correctly identified.

• Unexpected end of line or input.

1 correctly identified.

• A ’function’-definition cannot be inside a loop.

1 correctly identified.

• This function sometimes returns a value and sometimes does not.

1 correctly identified.

• This is an invalid input character: ’X’.

2 correctly identified, in both cases due to a German umlaut.

• A double equal sign ’==’ is required here.

1 correctly identified: elif i = 2:

• There is an extra indentation.

40 correctly identified.

PhD-Thesis, Tobias Kohn, 2017

8.3. COLLECTED DATA 149

• The indentation is inconsistent.

12 correctly identified.

• There is an extra opening bracket or parenthesis: ’(’.

1 correctly identified: left((90)

• There is an extra space.

1 correctly identified: draw Square()

8.3.3 Student’s Misunderstandings

In a few submissions, we were able to track the student’s response to the

error message provided. While a direct comparison was often difficult due

to too many changes made to the program code, we found a few noteworthy

examples.

The three examples below show clearly that students need to already have

a basic understanding of Python’s syntax in order to fix the program code.

Otherwise, the error messages can be interpreted incorrectly.

Some of the examples show the original code on the left, and the student’s

resubmission after the error messages has been shown on the right. As be-

fore, we changed some of the names and values in order to keep complete

anonymity.

“There is a body or indentation missing.” Students sometimes forget to

properly indent code that belongs into the body of a loop or function. Most of

these errors seem to be due to incomplete modifications of existing code. For

instance, when inserting the line “repeat 4:” above existing statements in

order to repeat them. However, in some cases the corrections made by some

students suggest that those students do not have a proper understanding of

the indentation principle. One student reacted to the error message “There is

a body or indentation missing” by indenting not only the loop’s body but also

the “repeat”-statement along with it.

PhD-Thesis, Tobias Kohn, 2017

150 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

repeat 2:
square(30)
square(50)
square(70)

repeat 2:
square(30)
square(50)
square(70)

Another student indented the “repeat” instead of the body as shown be-

low.

def square(side):
repeat 4:
forward(side)
right(90)

def square(side):
repeat 4:

forward(side)
right(90)

One student seems to not have understood how to actually correct the

problem of missing indentation of a loop’s body. The data shows a total of six

iterations for the following program with no actual progress.

def square():
repeat 4:
forward(100)
right(90)

At first, the student inserted parentheses between the “4” and the colon so

that the line read “repeat 4():”. As this did not work, he then removed

the parentheses and wrote “repeat4:” without a space before putting the

parentheses back.

Yet another student corrected a “repeat 4:”-statement without any body

after four different attempts to “repeat 4:4” and back to the original version

before giving up.

“To call a function you must add parentheses even when they are empty.”

In order to actually call a function the function’s name must be followed by

parentheses. Particularly in the case of functions without parameters and

hence empty parentheses, students tend to leave them out completely and

must be reminded of the necessity of parentheses by the error message. One

PhD-Thesis, Tobias Kohn, 2017

8.3. COLLECTED DATA 151

student, however, misunderstood the hint and put the parentheses around the

function’s name as shown below.

repeat 8:
drawStar

repeat 8:
(drawStar)

A matter of colons. The program shown below suggests that the student

struggles with the concept of colons. There are three extra colons as part of

function calls and a missing colon in the function’s definition.

from gturtle import *
makeTurtle ():

def square
repeat 4:

forward(100)
right(90)

setPenColor: ("red")
square: ()

At first Python indicates that there is an extra token ’:’ in line 2. However,

rather unexpectedly, the student removes the parentheses in line 2 instead of

the colon so that it reads makeTurtle: . As Python displays the same error

message again, the student then removes the colon, too. Python therefore

prompts him to put parentheses after the makeTurtle in order to actually

call the function.

After correction of that error, Python points out that the definition of the

function in line 4 is invalid. The student reacts by adding parentheses after the

function’s name. When Python indicates a missing colon in line 4 the student

puts the colon not at the end of the line but rather between the function’s name

and the parentheses, resulting in def square:() . It takes two additional

steps until the syntax of the function is correct.

The extra colons in the last two lines, however, are each corrected in a

single step, indicating that by now the student understood that he must indeed

just remove these colons.

PhD-Thesis, Tobias Kohn, 2017

152 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

Invalid definition of a function. In this example, Python asked the student

to provide parameters for the function.

def jump:
(100)

However, instead of adding parentheses the student put the function’s name

in single quotation marks, i. e. def ’jump’: . After Python then indicated

that a name was required the student added some parameter inside the string,

leading to def ’jump(distance)’: . As this still did not turn out to be cor-

rect, the final submission shows the def-keyword in quotation marks instead:

’def’jump(distance): .

8.3.4 Extra Whitespace

Among the more frequent student errors were extra spaces, particularly in

identifiers that were made up of multiple words, such as, e. g., “setPenColor”.

Students would then write, for instance, “set pen color”, resulting in the

syntax error of two consecutive identifiers.

Identifying the cause of two consecutive identifiers is a difficult task for the

parser, because there are several actual errors that all lead to the same syntax

error. Consider, for example set color, leading to the following list of actual

causes and intended statements.

• extra space, i. e., setcolor,

• missing assignment, i. e., set = color,

• missing comma, i. e., set, color,

• missing operator, i. e., set + color.

Identifying the error’s cause. At first, the parser always reported a missing

assignment – which is only rarely correct. Hence, an “ improved” version, that

was also used for the second tier of data collection, performed several checks

in order to find the true cause for the error.

PhD-Thesis, Tobias Kohn, 2017

8.3. COLLECTED DATA 153

For the two juxtaposed identifiers “set color”, the parser would first look

if either “setcolor” or “set_color” is a known identifier. At this point, the

lexer’s symbol table comes into play (cf. Section 7.4.1). The parser also per-

forms static analysis so as to take imported names into consideration. If either

concatenation of “set” and “color” is found to be a properly defined name,

or to be used in other places of the program, the parser decides that there is

indeed an extra space.

Why it did not work. In the collected programs, we found that the error of

an “extra space” usually occurs in connection with a change of case. Students

have not only inserted an extra space, but also changed the capital letter of

the second word to a lower case letter. For instance, “set color” should not

be corrected to “setcolor”, but rather to “setColor” with capital “C”.

Secondly, some of the names had more than one space inserted, since they

consisted of more than two names. For example, “set pen color” instead of

“setPenColor”.

Finally, students were often more or less consistent in splitting names. This

resulted in several incorrect identifiers occurring in the program. The parser

therefore assumed that the given name parts were intended as full identifiers.

In short, the requirement that each syntax error occurs in isolation (Sec-

tion 7.2.1) does not hold.

PhD-Thesis, Tobias Kohn, 2017

154 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

8.4 Do Error Messages Help the Student?

Particularly in the context of education, a most relevant question is: do the

improved error messages actually help the novice programmer? What is the

effect of the error messages on the students?

We found that measuring the effectiveness of (enhanced) error messages

is a hard problem. Moreover, obtaining reliable and generally valid results is

clearly beyond the scope of this dissertation.

8.4.1 Do Error Messages Help in Learning – A Survey

We conducted a survey to assess what students found most helpful for their

learning in programming. The survey’s questions were in part inspired by a

study of Lathinen et al. [35] on the difficulties of novice programmers. While

many questions of the study by Lathinen et al. did not apply to our situation,

we were able to reproduce one finding of that study: students rated example

programs as the most helpful materials for learning in both surveys (Lahtinen

et al. found an average of 4.19 with standard deviation 0.86).

Methodology. The students completing our survey were asked to rate ques-

tions on a scale from 1 (not helpful, do not agree) to 5 (very helpful, strongly

agree).

In total, 82 students from three different high schools as well as a univer-

sity of teacher education answered our survey. All students had about seven

month of training in programming with Python. In addition, the surveys were

conducted in regions where German is the native language. However, not all

students provided answers to all questions.

Results. The results from the survey are collected in the table below. How-

ever, we only included questions with some relevance to this thesis.

PhD-Thesis, Tobias Kohn, 2017

8.4. DO ERROR MESSAGES HELP THE STUDENT? 155

For each question, we give the number of participating students, the aver-

age score of the answers (from 1 to 5) and the standard deviation.

N Avg Std

Of how much help are the following items for your learning?

(1) Explanations in the course materials 82 4.04 0.83

(2) Studying examples in the course materials 82 4.15 0.93

(3) The error messages shown in the environment 81 3.30 1.20

(4) Running a program step by step with the debugger 52 3.00 1.16

How strongly do you agree to the following statements?

(5) The German translations of error messages are helpful 53 4.04 1.09

(6) I do not read the error messages 54 1.90 0.94

Discussion. With a score of only 3.3 (slightly above average), the error mes-

sages were not considered particularly helpful for learning (question 3). How-

ever, the standard deviation is relatively high, indicating the students’ opinions

on this issue varied.

Of the 54 students who answered question 6 about whether they read the

error messages at all, 11 students had a score of three or more, and two stu-

dents strongly agreed. Hence, in general, students answered that they would

read the provided error messages. This result contradicts somewhat our expe-

rience from classroom. While teaching, we felt that many students would just

discard the error messages without paying any closer attention to them. Even

when considering that our own experience is highly anecdotal, the answers to

this quesion might not be entirely reliable. In addition, due to the negative

phrasing of question 6, we have to assume that some students put their marks

in the wrong field.

We also compared the answers to questions 3 and 6, but we could not find

any correlation. Even among the two students answering that they would not

read the error messages, one found them very helpful (5) while the other rated

them as not helpful at all (1).

PhD-Thesis, Tobias Kohn, 2017

156 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

Note that the students answers suggest a high appreciation of the error

messages’ translation into their native language. Given the high score of ques-

tion 5, we could hypothesize that students rate error messages higher if they

are given in an understandable language, whereas the accuracy might be of

less concern.

Conclusion. Based on these numbers, the improved error messages did not

stand out as particularly helpful in learning to program. The most appreciated

detail about error messages seems to be a translation into the students’ native

language.

8.4.2 Related Work

The importance of a compiler’s error messages for the student have long been

recognized. For instance, du Boulay et al. see error messages as an important

source of information about the notional machine that runs the program. They

state that “error messages [. . .] form an important window into the machine”

[14]. However, the actual messages produced by widespread compilers seem

of little help to the novice. As, e. g., Nienaltowski et al. note: “Novices find it

difficult to understand and use compiler error messages” [45].

Accordingly, various projects and studies have sought to improve a com-

piler’s error messages [5, 11, 24, 45]. Becker [5] and Denny et al. [11]

both provide good overviews of other related work, but also conclude that

few of these projects provide an empirical evaluation to its effectiveness. For

instance, Becker notes that “many of the studies discussed [. . .] focus on ad-

dressing the problem with compiler error messages, but lack empiricism in deter-

mining if they make any difference, particularly to novices” [5].

Most of the studies use Java as the underlying programming language,

none uses Python (cf. Section 6.1).

PhD-Thesis, Tobias Kohn, 2017

8.4. DO ERROR MESSAGES HELP THE STUDENT? 157

Improving error messages. While the different studies have tried to im-

prove the error messages in various aspects, no consensus on the effectiveness

of these improvements has been reached.

Denny et al. [11] enhanced Java’s syntax errors in two ways. First, they

built a recognizer for common error patterns so as to accurately identify 53 dif-

ferent types of syntax errors. They then enhanced each error message to not

only include a short message, but also a more detailed description of the prob-

lem, as well as an example.

In order to assess the success of their approach, Denny et al. measured how

often each student attempted to compile a program before it would actually

compile and run. However, they conclude that “Although we anticipated that

the enhanced error messages would help students to identify and correct errors,

analysis of the data shows no significant (or practical) effect.” [11]

A second study by Nienaltowski et al. [45] investigated compiler error mes-

sages for Eiffel and Java, respectively. Error messages were presented to the

student either in a short, concise form, visually by highlighting the error inside

the editor, or in a “long form” with a more detailed explanation.

The actual study of Nienaltowski et al. was based on a questionaire, and

measured the number of correct answers, as well as response times for some

of the answers. The study also concludes that the additional information pro-

vided in the longer error messages “did not aid message comprehension, or help

identify the error faster or better” [45].

In contrast to the first two studies, Becker [5] found that enhancing com-

piler error messages is helpful. The tool used in Becker’s study recognized a

total of 30 common Java errors, and generated customized error messages for

each of these errors. The assessment was then based on the number of itera-

tions per error, as well as per student. The study concluded that in the case of

eight error types, the enhanced messages resulted in a significant reduction of

the number of errors.

PhD-Thesis, Tobias Kohn, 2017

158 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

Measuring the effectiveness. The studies discussed above use slightly dif-

ferent methods to assess the effectiveness of enhanced error messages. While

Denny et al. [11] counted the number of attempts to run a program before it

would actually compile, Becker [5] counted the numbers of individual errors.

Finally, counting the number of correct answers as in the study of Nienaltowski

et al. [45] can only be used in the context of a dedicated survey or question-

aire.

However, as noted by Marceau et al.: “There is no single metric for ‘effec-

tiveness’ of an error message” [41]. The study by Marceau et al. measures the

effectiveness of an error message by the student’s response to it: “does the stu-

dent make a reasonable edit [. . .] in response to the error message?” [41]. They

also contrast their method to comparing the students’ grades.

In the light of the different studies presented here, we can conclude that

an accurate measurement of the effectiveness of enhanced error messages is a

hard problem.

8.4.3 Discussion

When assessing the effectiveness of error messages, we face different prob-

lems. First, we need to specify what we mean by “effectiveness”. Is an effective

error message one that supports the novice’s learning as good as possible, or

rather one that lets the novice correct his or her program as quickly as possi-

ble? Second, we must find an appropriate measurement for the quality we are

interested in. For instance, how do we decide whether an error message has

successfully helped the programmer to overcome a problem? Third, we have

to take the vast inhomogenity of the student population into consideration.

Which kind of students or novice programmer do we want to address and take

into our study?

What is effectiveness. Enhancing error messages is frequently understood

as providing the student with additional information and explanations. Tools

PhD-Thesis, Tobias Kohn, 2017

8.4. DO ERROR MESSAGES HELP THE STUDENT? 159

like the one described by Denny et al. [11] do not only point out the error,

e. g., “missing parentheses”, but also give an extended explanation as of why

parentheses would be needed in the case at hand.

Our own anecdotal experience from classroom, however, contradicts the

effectiveness of such enhanced error messages. We observed that students

rather quickly discarded the lengthy message – without ever reading it (fully).

It seemed as if the students perceived the explanations as a distraction that

had little to do with their own code. Even though we have no evidence, this

assumption is supported by the study of Nienaltowski et al. [45] that found no

support for longer error messages as more effective, even while stating that

“the assumption is that longer explanations and suggestions of error corrections

improve novice’s understanding of the problem and therefore their performance”

[45].

Instead of attempting to directly teach students the reason for the error at

hand, error messages might need to enable a student to quickly fix, compile,

and run the code. The learning process would then have to be considered in a

larger context.

Finally, good error messages might not only instruct the student how to fix

the program code, but also reveal some of the machine’s inner working, as has

been proposed by du Boulay et al. [14].

How to measure effectiveness. A valid statistical measurement requires a

large number of sample data. This, in turn, implies an automated assessment

of the data. Possible quantities that might be measured to that end could

include the number errors and failed attempts to run a program, or the time

between the display of an error message and the subsequent attempt to run

the program. A much coarser grained study might look at the students’ grades,

thereby gaining little insight into which error messages proved helpful.

One might also measure the number of error-related questions asked by

students in a classroom. The implication being that students who are provided

with good error messages would require less assistance from a teacher or tutor.

PhD-Thesis, Tobias Kohn, 2017

160 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

The data on error messages collected as part of this thesis included the

time intervals between the display of an error message and a subsequent re-

submission of the program. This would, in principle, allow us to measure how

long it took students to correct errors as based on the error messages.

However, we found that the times as well as the changes made to the

programs varied so strongly that no meaningful measurement was possible.

The most simple syntax errors (e. g., the missing parenthesis in forward40))

were often quickly fixed, but it is doubtful how much these simple cases reveal

about the effectivness of the error message. In many more complex cases, the

resubmitted programs showed significant changes. Accordingly, it is difficult,

and frequently a matter of interpretation whether the changes just solve the

problem pointed out by the error message, are an abandonment of the original

idea, or also include further extensions not related to the original error.

Moreover, Marceau et al. [41] state that the data collected on error mes-

sages does not support any conclusions about conceptual difficulties “because

the error message that a student sees is often not a direct indicator of the under-

lying error” [41]. In addition, du Boulay states that “Often the error message is

not very explicit about what the novice has done wrong.” [13]

Finally, we observed in classroom that students frequently interrupt their

work on the computer, for instance in order to help each other, or discuss a

colleague’s solution. From this experience, we consider time measurements

highly unreliable.

The diverse student population. Section 8.3.3 shows that some students

exhibit a very poor understanding of the basic structure of Python programs.

Some submissions even included pseudo-statements such as, e. g., Problem 1: ,

or what appears to be a literal copy from the textbook:

def name(parameters):
here go the statements
that are part of your
function.

PhD-Thesis, Tobias Kohn, 2017

8.5. DISCUSSION 161

What message should an error message addressed to these students convey?

Is it even possible to help foster an understanding of basic principles in error

messages?

On the other side of the spectrum, we find submissions that seem to stem

from students with prior exposure to programming in another programming

language. The following switch-statement shows that the student already

grasped the basic syntax of Python, and tried to translate a foreign structure

to Python:

switch n:
case 1:

...
case 2:

...

How would, in such a case, a correction of the error look like? Can we, in less

obvious cases, discern between an advanced student trying to apply previous

knowledge, and a complete novice who just copied a piece of code from the

internet?

8.4.4 Conclusion

Judging by the work that has already been done, as well as the data we have

collected so far, assessing the effectiveness of error messages is clearly a diffi-

cult problem. The conceptual problems, such as what makes an error message

effective, are supplemented by administrative challenges, including the sub-

ject for the study.

We therefore conclude that such an assessment on the effectiveness of the

error messages produced by our parser is beyond the scope of this dissertation.

8.5 Discussion

Syntax errors are a class of strongly differing types of errors. Some errors

can clearly be attributed to a simple or even trivial typing error. Other errors

PhD-Thesis, Tobias Kohn, 2017

162 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

rather expose fundamental misconceptions of the student, and a lack of un-

derstanding of Python’s syntax. In the first case, a short hint might usually

suffice to help the student correct the program code. The second case, on the

other hand, might require more elaborate intervention. However, good error

reporting is even further complicated by the fact that the “true” errors of the

students do not map one-to-one onto the errors seen in the faulty program.

Consider the example of the erroneous statement def square() . In the

collected data, we found both instances where this error was due to a missing

function body, and where the student’s intention was rather to just call the

function “square”. Hence, the two error sources map to the same syntax error.

Moreover, we might want to interpret the missing body as a mere oversight,

just an incomplete program that is missing some parts. At the same time, the

“def” in the call-statement might be due to a conceptual misconception.

Hence, writing a parser with good error recognition is not only an engi-

neering task. The students’ actual mistakes, syntax errors and problems must

also be taken into consideration. To this end, we have collected the programs

and error messages of novice programming students over two months.

8.5.1 Assessing the Results

The collected programs and errors indicate that the population of program-

ming students is extremely diverse. While the produced error messages might

be useful for some students, the same situation might be unintelligible to oth-

ers.

Even measuring how good the reported error messages fit the actual prob-

lem is a subjective task, since we often have limited knowledge about the

student’s plans, intentions and understanding of Python’s syntax. Moreover,

the number of fitting messages decreases quickly if we take into account the

submissions where the programs turned out to be prose text, for instance, and

not Python code at all.

PhD-Thesis, Tobias Kohn, 2017

8.5. DISCUSSION 163

8.5.2 Thesis

Thesis 3. The parser can correctly identify and report at least 75 % of syntax

errors that are made by high school novice programmers in Python.

Despite the difficulties associtated with syntax error, and the assessment of

how “correct” the reported errors are, we have shown that, under reasonable

assumptions, the parser can produce accurate error messages for a large set

of common syntax errors. In both tiers of data collection, the parser correctly

identified around 80 % of the syntax errors.

PhD-Thesis, Tobias Kohn, 2017

164 CHAPTER 8. EXPERIMENTAL RESULTS FROM PARSING PYTHON PROGRAMS

PhD-Thesis, Tobias Kohn, 2017

Chapter 9

Conclusions and Future

Research

9.1 Studying the Errors of Students

Teaching students and observing their errors. Teaching programming is

difficult. Our students do not only come with preknowledge from other fields,

particularly mathematics, but also form new misconceptions based on the ma-

terial they are presented with. As educators, we must help the students iden-

tify and correct their misconceptions about programming.

The primary tool for recognizing and identifying misconceptions is study-

ing the students’ errors and mistakes. The relationship, however, between the

students’ actual understanding (or lack thereof) and the observable behaviour

and errors is complex and depends on many additional factors. In other words,

a single error usually gives us little information about the students’ thinking.

Theses 1 and 2: a model of variables. If we look at collections of errors,

patterns start to emerge, and we can form a clearer picture of the students’

PhD-Thesis, Tobias Kohn, 2017

166 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

misconceptions that led to the observed errors. We presented one such pattern,

which indicates that some students apply a model of mathematical reasoning

to programming, leading to incorrect assumptions about how programming

actually works.

As part of this dissertation, we have not only given an interpretation of spe-

cific error patterns. We have also proposed a teaching method to address the

problems, and provided some indication that our teaching method is indeed

effective.

Thesis 3: recognizing syntax errors. As not all errors are due to an un-

derlying misconception about fundamental principles, we might also want to

provide the student with automated, yet intelligible feedback about his or her

(syntax) errors. Such feedback comes directly from the programming envi-

ronment in form of error messages. Precise and accurate feedback could help

guide the novice programmer towards implementing his or her algorithmic

plans. Yet, such a guidance requires a preceding thorough study of error pat-

terns.

In our dissertation, we have presented a collection of syntactical and se-

mantical errors found in students’ programs. Based on that collection, we

then have implemented a parser, capable of identifying many of these errors.

Subsequent comparison to further programs by our students showed that there

is still a considerable percentage of instances, where the parser was not able

to correctly identify the error. However, this is to be expected: as pointed out

above, the relationship between students’ misconceptions and the errors found

in programs is too complex to automatically infer the underlying problem from

a syntax error.

PhD-Thesis, Tobias Kohn, 2017

9.2. FUTURE RESEARCH 167

9.2 Future Research

Developing a correct mental model of the notional machine. A proper

mental model of how a program is executed is essential in the field of pro-

gramming. Developing such a correct mental model of the notional machine

(i. e., the conceptual machine that actually executes the program) turns out to

be a difficult and error-prone process.

In our thesis we have shown that some students base their mental mod-

els of the notional machine on mathematics. They thus attribute algebraic

capabilities to the executing machine, resulting in incorrect programs and in-

terpretations of program execution. Taking into account that our students

are extensively trained in mathematics, we might assume that students with

different backgrounds construct different mental models of the notional ma-

chine, still based on preknowledge from another field. As reported in various

other studies (cf. Section 5.2), some students also base their model on, say,

the use of language, thereby assuming, e. g., that a variable called “max” will

automatically hold the maximum value of a given data set.

Further research will undoubtedly reveal further sources of misconceptions

and inappropriate mental models. Such research will also study how common

certain models and misconception actually are. Of special interest, of course,

is the question of how we can teach our students so as to correct their miscon-

ceptions and foster them in developing the proper mental models.

Syntax errors in Python. With a Python environment that is capable of dis-

cerning different syntax errors, future research can start to investigate the

frequency of syntax errors in Python, and identify the most common syntax

errors. Educators could direct their students’ attention to common problems

and concentrate on what is really difficult.

Of even more interest is a proper evaluation of how helpful the parser’s

error messages actually are. As we have pointed out in Section 8.4, such

research will be extensive and requires careful selection of study subjects, as

PhD-Thesis, Tobias Kohn, 2017

168 CHAPTER 9. CONCLUSIONS AND FUTURE RESEARCH

well as the metrics to measure. Possible metrics include:

• The time to correct (syntactically) faulty programs: how long do stu-

dents take to correct a syntax error, how often do they resubmit a pro-

gram until it is (syntactically) correct?

• The assistance students need from their teacher or tutor to correct a (syn-

tactically) faulty program: how frequent and how extensive do students

require additional explanation from an expert?

• The learning effect: how much do students know or learn about Python’s

syntax with the help of error messages?

• The students’ self-perception and self-confidence: do they find the pro-

vided error messages helpful, and, in particular, do they feel supported

by the error messages in the implementation of their plans and goals?

Errors and miconceptions. Studying the students’ errors and mistakes re-

mains an important tool to paint a picture of their understanding and mis-

conceptions about programming. As we have pointed out above, individual

errors usually tell us little about the students actual thinking. Hence, it would

be most illuminating to investigate the sets of errors made by each individual

student, and compare them to the students performance and ability to correct

his or her mistakes based on the given feedback.

PhD-Thesis, Tobias Kohn, 2017

Syntax Errors

The following list includes all errors that can be reported by the parser as

presented in this thesis. We give a very brief description of each error.

Not that the internal names, by which this list is sorted, have often been

parametrized later on. For instance, AND_CONNECTS_CMP_NOT_VARS does

not only apply to and, but also to or (which has been added later on).

The parser has two different modes to operate in. In “strict mode”, the

parser does not only recognize true syntax error according to the grammar,

but also some additional problems. For instance, in strict mode, a simple

name is not a valid statement. Errors only reported in strict mode, are marked

with an asterisk *.

AND_CONNECTS_CMP_NOT_VARS ’X’ connects comparisons not variables. where

X is either and or or.

This error can be explained as a “natural language misconception” where

students write if x and y > 0 instead of if x > 0 and y > 0 . In

order to detect the error, the parser looks for the pattern where and or or

connect a single variable name with a full comparison. Before reporting

the error, however, the parser checks if the name on the left (x in the

example above) has type ’Boolean’.

See also: CANNOT_TEST_TUPLE.

ARG_AFTER_VARARGS You cannot pass further arguments after an unpacking

PhD-Thesis, Tobias Kohn, 2017

170 SYNTAX ERRORS

var/keyword-argument.

When calling a function, you can unpack a sequence such that each

element of the sequence is treated as a single argument. After this

unpacking, however, no further arguments are allowed. For instance,

foo(*mylist, 123) is illegal.

AS_NOT_ALLOWED_HERE ’as’ is not allowed/supported here.

In the future-import, i. e., from __future__ import ... , you cannot

use an alias for the imported name because there are no names to be

imported into the dictionary of locals.

ASSIGNMENT_TO_RIGHT The target of an assignment must be on the left.

Assignments are often a source of errors and misconceptions. In partic-

ular, the equal sign ’=’ suggests a symmetry, leading students to believe

that both x = 2 and 2 = x are valid assignments.

When the parser detects that the target of an assignment is invalid,

it checks whether the source is a single name. If the right-hand side

of the assignment is indeed a name and hence a valid target for as-

signment, this error is reported. Otherwise, the parser reports an IN-

VALID_ASSIGNMENT.

BREAK_OUTSIDE_LOOP A ’X’-statement cannot occur outside a loop. where X

is either break or continue.

Standard error.

CALL_NEEDS_PARENTHESES* To call a function you must add parentheses

even when they are empty.

When the parser detects a single name used as a statement, it checks if

the given name is a function. If so, it reports that the function call needs

parentheses instead of USELESS_STATEMENT.

PhD-Thesis, Tobias Kohn, 2017

171

There is one case, however, which the parser will accept: when the name

occurs inside a try-block. It is a common pattern in Python to test if a

given name has been defined or a module has already been imported.

CANNOT_APPLY_ASYNC Cannot apply ’async’ to this statement.

The async-modifier can only be applied to def-, for- and with-statements.

CANNOT_ASSIGN_TO_CALL You cannot assign something to a function call.

The parser detects if the target of an assignment is a function call and

reports this error. A typical example might be foo(1) = 23 . The exact

reason for this error might be due to various misconceptions. Possible

reasons include an attempt to define a function or an assignment to a

list with the wrong kind of brackets.

If the source is just a single name, an ASSIGNMENT_TO_RIGHT error is

reported instead.

CANNOT_ASSIGN_TO_FUNCTION* You cannot assign something to a func-

tion.

This error is reported when a student tries to assign a value to a function

from inside the functions. For instance, inside the body of the function

isPrime we find the assignment isPrime = False .

Strictly speaking, overwriting even built-in functions with a value or us-

ing a local variable with the same name as the function is legal in Python.

However, since it can lead to puzzling and unexpected effects for novice

programmers, we report this as an error.

See also: CANNOT_REDEFINE_NAME.

CANNOT_REDEFINE_NAME* The name ’X’ is already defined. where X is a

name.

Some students tend to reuse names for different purposes, thereby ren-

dering functions inaccessible. One example might be input = input() ,

PhD-Thesis, Tobias Kohn, 2017

172 SYNTAX ERRORS

where the builtin input-function might inadvertedly be overwritten. We

found some rather subtle cases particularly in the context of parameters

shadowing functions.

See also: CANNOT_ASSIGN_TO_FUNCTION.

CANNOT_TEST_TUPLE You need to test each element of this tuple individually.

When several variables need to be positive some students use mathe-

matical notation and write, for instance, if a, b > 0 . The parser will

then report that Python cannot test a tuple against a number. Some-

times, however, the programmer might indeed want to compare tuples.

In such instances, however, the tuple must be put into parentheses:

if (a, b) > (0, 0) . Hence, if the parser finds such an instance, it

reports the error TUPLE_NEEDS_PARENS instead.

This error is very similar to AND_CONNECTS_CMP_NOT_VARS with the

only difference that the programmer used a comma instead of and to

connect variables.

CANNOT_USE_KEYWORD_AS_NAME You cannot use the keyword ’X’ as a

name. where X is any Python keyword.

When learning to program, many students are not yet aware of all the

possible keywords and might accidentally try to use a keyword as a

name. The parser detects this error whenever a keyword is used as the

target of an assignment or as a paramter.

CLASS_METHOD_WITHOUT_SELF A class-method needs at least one param-

eter.

Class methods in Python get a reference to the class as their first argu-

ment. A method with the @classmethod-decorator therefore needs to

have at least one parameter.

COLON_EXPECTED A colon ’:’ is required here.

PhD-Thesis, Tobias Kohn, 2017

173

A very common, but simple error among novice Python programmers is

to forget the colon in compound statements such as if, for, def, etc.

CONDITION_ALWAYS_FULFILLED* This condition is always fulfilled.

Similar to CONDITION_CANNOT_BE_FULFILLED the parser also detects

some very simple cases where the condition is always fulfilled, e. g.,

if 0 < 1 .

CONDITION_CANNOT_BE_FULFILLED* This condition cannot be fulfilled.

The rationale behind this error are conditions where a variable is tested

to be within a given range. For instance, if 0 < x < 3 . Either in

the case where negative numbers are used or where such conditions

are multiplied using copy-paste, the given range might not contain any

numbers at all. For instance, there is no number which would fulfill the

condition if 0 < x < -3 .

Even though such conditions are legal in Python and might be used con-

sciously, they are more often source of very-hard-to-find bugs.

DECORATOR_NAME_CLASH* A function and its decorator cannot have the

same name ’X’. where X is the name of the function.

When a function bears the same name as its decorator, the decorat-

ing (original) function is in fact overwritten, leading to unexpected be-

haviour later on and hard-to-find bugs.

For instance, TigerJython offers a decorator @onMouseClicked to mark

a function as a callback for mouse-click events. However, some students

named their own function also onMouseClicked, and registered several

functions so as to react to mouse-click events.

DECORATOR_NEEDS_CALLABLE Decorators are only applicable to functions

and classes.

Some students try to write code between a function and its decorator,

thereby decoupling the dectorator from the function.

PhD-Thesis, Tobias Kohn, 2017

174 SYNTAX ERRORS

DEFINITION_INSIDE_LOOP* A ’X’-definition cannot be inside a loop. where X

is either function or class.

Advanced Python techniques define functions with different closures in-

side a loop. In the context of novice programmer, however, the definition

of a function or a class inside a loop is rather based on a misconception.

In particular, some students put the entire program inside a loop in or-

der to have the program being executed mutliple times in a row. Even

though this might be syntactically legal, it is of little help to the novice

programmer in learning to understand the concepts such as functions.

See also: IMPORT_INSIDE_LOOP.

DOUBLE_ELSE A ’X’-structure can only have one ’else’-branch. where X is if,

while or any other compound keyword that has an else.

If programs grow and become larger, a programmer might accidentally

define two else-branches for a condition.

See also: USE_ELIF_INSTEAD_OF_ELSE, USE_ELIF_INSTEAD_OF_ELSE_IF.

DOUBLE_EQUAL_SIGN_EXPECTED A double equal sign ’==’ is required here.

The problem where the programmer uses a single equal sign ’=’ for com-

parison is well documented and reaches far beyond Python. A typical

example might be if x = 0: .

Standard Python usually reports that it requires a colon at the point of

the single equal sign, which is almost always wrong and confusing to the

novice programmer. Even though this error might in fact be due to other

omissions, a missing second equal sign is arguably the most common

real cause for this error.

See also: SINGLE_EQUAL_SIGN_EXPECTED.

DOUBLE_PARAMETER_NAMES Two parameters cannot have the same name:

’X’. where X is the name of the parameter.

PhD-Thesis, Tobias Kohn, 2017

175

Corresponds to Python’s message “SyntaxError: duplicate argument ’X’

in function definition.”

ELSE_MUST_BE_INDENTED ’X’ must be indented to match the ’if ’. where X is

either else or elif.

This is a special case of invalid indentation, where the programmer has

unindented the else too much.

ELSE_WITH_COMPARISON ’else’ does not have a comparison.

Some students believe that else – like its counterpart if – requires

a condition. For instance, after an if x >= 0 they go on to write

else x < 0 .

In order to detect this error, the parser checks if the else is followed by a

colon at the end of the line and a suite below. In particular, else foo()

(without a suite) is rather missing a colon after the else and has foo()

as the body of else.

ELSE_WITHOUT_IF There is an ’X’ without an ’if ’. where X is either else or

elif.

Before the parser reports this error, it tries to adjust the indentation and

reports either ELSE_MUST_BE_INDENTED or INDENTED_ELSE.

EMPTY_SUBSCRIPT The subscript cannot be empty.

In constrast to a function call without arguments, a subscript requires an

index or a slice. Hence, myList[] is illegal.

EXTRA_INDENTATION There is an extra indentation.

This error indicates that a line has been indented but the preceeding

statement is not a compound statement that would allow for a suite.

See also: INCONSISTENT_INDENTATION.

PhD-Thesis, Tobias Kohn, 2017

176 SYNTAX ERRORS

EXTRA_LINEBREAK There seems to be an extra linebreak. You might want to

hide it using ’\’.

In Python, a line break marks the end of a statement, even when the

actual statement is intended to span several lines. Hence, when a line

ends in an operator such as a plus sign and the following line is most

likely an expression, the parser reports this error and joins the lines for

further parsing. The error is also reported if a line is indented and begins

with a dot.

EXTRA_LEFT_BRACKET There is an extra opening bracket or parenthesis: ’X’.

where X is the extra bracket, e. g., (.

In case of the pattern 〈(〉〈(〉〈NAME〉〈)〉〈NEWLINE〉 the compiler does not

try to insert the missing right parenthesis but deletes the extra left paren-

thesis.

See also: MISSING_RIGHT_BRACKET, EXTRA_RIGHT_BRACKET, MISS-

ING_LEFT_BRACKET.

EXTRA_RIGHT_BRACKET There is an extra closing bracket or parenthesis: ’X’.

where X is the extra bracket, i. e.,),] or }.

An extra right (closing) bracket could mean that somewhere there is a

corresponding left bracket missing or that, indeed, there is just an extra

right bracket. A common case for an extra right bracket occurs with

nested bracketing as in foo(bar(egg())) .

See also: MISSING_RIGHT_BRACKET, MISSING_LEFT_BRACKET, EX-

TRA_LEFT_BRACKET.

EXTRA_SPACE There is an extra space.

Particularly at the beginning, novice programmers have difficulties typ-

ing program code. They first must learn that the code is case-sensitive

and that spaces matter in some places, but not in others (a common ques-

tion is whether there is a space between the name of a function and the

PhD-Thesis, Tobias Kohn, 2017

177

following parentheses). This uncertainty leads to some novices separat-

ing the different words of a compound name such as set pen color

instead of setPenColor .

When the parser detects two consecutive names, it checks whether link-

ing these names together produces a valid name. If so, it reports that

there is an extra space and removes it. If, however, both names exist at

other places in the program, the parser reports an

EXTRA_SPACE_OR_MISSING_COMMA error.

Finally, if the parser finds that the second name might be a field of the

first one, it reports a MISSING_DOT.

See also: MISSING_SPACE.

EXTRA_SPACE_OR_MISSING_COMMA There is an extra space or missing comma.

This error is reported when a statement begins with two subsequent

name tokens, e. g., egg bacon() .

See EXTRA_SPACE, MISSING_ASSIGNMENT.

EXTRA_TOKEN There is/are extra token(s): ’X’.

Whenever the parser fails to identify the exact cause for an error and

finds that deleting one or more tokens is a viable option, it reports that

there is or are extra tokens.

FOREIGN_KEYWORD ’X’ is not a keyword in Python. where X is a word like

to that seems to be used as a keyword.

See FOREIGN_TOKEN.

FOREIGN_PRIVATE The token ’X’ is invalid, use underscores ’_’ to mark a func-

tion as ’private’. where X is an invalid private- or protected-keyword.

See FOREIGN_TOKEN.

FOREIGN_STATEMENT Python has no ’X’-statement. where X is a statement-

type such as switch.

PhD-Thesis, Tobias Kohn, 2017

178 SYNTAX ERRORS

See FOREIGN_TOKEN.

FOREIGN_SYNTAX This X-syntax is invalid in Python. where X is the name of

a programming language such as Lisp.

If the parser detects statements such as (let x 123) it reports that

this is invalid syntax in Python.

FOREIGN_TOKEN The token ’X’ is invalid, use ’X’ instead. where X are the

offending token and the correct Python alternative, respectively.

Some programmers new to Python might have previous experience with

other programming languages. They might then try to directly use con-

structs alien to Python but legal in, say, Java. Where such an intention

is obvious, the parser will report an error indicating how to properly

achieve the same goal in Python.

Among the different error reported are FOREIGN_TOKEN,

FOREIGN_PRIVATE, FOREIGN_VAR, FOREIGN_KEYWORD,

NO_END_NEEDED, FOREIGN_STATEMENT.

FOREIGN_VAR Python does not use ’X’ to define variables. where X is a key-

word such as var.

See FOREIGN_TOKEN.

FOR_TARGET_NAME_REQUIRED The ’for’-loop requires a variable.

Some students tried to incorporate literals directly into the for-loop, as

in for "e"in word . The parser detects the use of literals in such a

place and reports that a variable must be used.

FUTURE_MUST_BE_FIRST The ’from __future__ import’-statement must be the

first statement in the module.

This error is raised if the future-import is preceded by any other state-

ment than a docstring or another future-statement.

PhD-Thesis, Tobias Kohn, 2017

179

GENERATOR_CANNOT_RETURN_VALUE A generator cannot use ’return’ to

return a value.

As soon as a function contains a yield-statement, the function is turned

into a generator. In such a case, however, it becomes illegal to try and

return a value using return as all values must be returned via yield.

GLOBAL_MUST_BE_FIRST* ’X’-statements must be the first statements inside

a function. where X is global or nonlocal.

In “strict” mode the parser requires global statements to precede any

other statements inside a function’s body, except for docstrings, other

declarations and imports. In Python, the global-statement can actually

be used anywhere within the function, but it might lead to strange results

if the variable is used before declared as global.

GLOBAL_OUTSIDE_FUNCTION A ’X’-statement cannot occur outside a func-

tion. where X is global or nonlocal.

Standard error.

IMPORT_INSIDE_LOOP* An ’import’-statement cannot be inside a loop.

For advanced programmers, there might be valid reasons for using an

import inside a loop. In the case of novice programmers, however, this

is surely sign of an error.

See also: DEFINITION_INSIDE_LOOP.

INCOMPLETE_IMPORT This import statement is incomplete.

An incomplete import-statement is of the form from module import

with the name to import missing. Some novice students actually tend to

omit the star at the end of such imports as they are not aware that the

star bears any meaning.

INCONSISTENT_INDENTATION The indentation is inconsistent.

PhD-Thesis, Tobias Kohn, 2017

180 SYNTAX ERRORS

An inconsistent identation occurs when the current statement is less in-

dented than the previous one, but not enough to signal the end of a

block. Common causes are either students yet unaware that indentation

is important, or a statement that would end several nested blocks with

no visual connection to the proper indentation.

See also: EXTRA_INDENTATION.

INCONSISTENT_RETURNS* This function sometimes returns a value and some-

times does not.

Good programming practice clearly distinguishes between functions with

a return value and procedures returning nothing (None, Unit, void or

something similar). To make students aware of this distinction, the

parser reports a warning if the function could be left both by returning a

value and by not returning anything (in the case of Python, the function

still returns None). Note that for this check return and return None

are distinct statements, even though their effect is the same.

More frequent cause for this error, however, is not programming style but

rather a forgotten return in one of the branches. Think, for instance,

of a function searching in a loop through a list and returning a value in

case something has been found. The function should then also return

something meaningful in the case the search was not successful (or raise

an exception).

INDENTED_ELSE This ’X’ must not be indented. where X is either else or

elif.

Some students consider the else to be part of the if’s body and hence

indent it accordingly. The parser detects this case and reports that the

else should not be indented.

INFINITE_LOOP* This is an infinite loop: it runs forever.

PhD-Thesis, Tobias Kohn, 2017

181

Whether raising this error makes sense is certainly debatable as there are

good reasons for using an infinite loop. Considering, however, that the

parser was written with novice programmers in mind, an infinite loop is

more often due to a forgot break-statement/condition.

Another cause for this error might be a student writing while 5 in order

to have Python repeat some code five times. If repeat-loops are enabled,

the parser reports

USE_REPEAT_INSTEAD_OF_WHILE in this case.

The parser does not report loops with while True to be infinite. In this

case it assumes that the loop is supposed to run infinitely.

INITIALIZATION_INSIDE_LOOP* You cannot have the initialization inside the

loop.

The parser checks loops for the pattern where one of the first lines as-

signs a value to a variable and the very same variable is updated towards

the end of the loop. For instance, the first statement inside the loop

might be x = 0 and the last statement x += 1. Before reporting the er-

ror the parser makes sure that the variable x is not accessed before the

initialization or after the update.

INVALID_ASSIGNMENT You cannot assign something to ’X’. where X is any

expression that cannot serve as a target.

If the assignment’s target expression is not a valid target expression such

as a name or a subscript, the parser reports this error. Before doing so, it

first checks if the source on the right-hand side is just a single variable.

If so, ASSIGNMENT_TO_RIGHT is reported instead.

See also: CANNOT_ASSIGN_TO_CALL, CANNOT_ASSIGN_TO_FUNCTION,

INVALID_AUGASSIGN_TARGET.

INVALID_FUNCTION_DEF Invalid definition of a function.

PhD-Thesis, Tobias Kohn, 2017

182 SYNTAX ERRORS

The parser tries to see, if after a def-keyword, a valid name and subse-

quently parameters are given. In case it detects a specific error such as

an invalid name, it reports it and continues with parsing the function. If,

however, the parser cannot identify the error and recover, it reports this

error.

See also: INVALID_FUNCTION_DEF_ASSIGN

INVALID_FUNCTION_DEF_ASSIGN Use ’:’ and ’return’ instead of an assign-

ment.

This error is reported in the case of def foo(x) =

See also: INVALID_FUNCTION_DEF.

INVALID_GENERATOR_ARG A ’generator/comprehension’ argument cannot be

combined with other arguments.

Python can use a generator/comprehension as argument to a call as,

e. g., in

list(x**2 for x in range(5)).

Such a generator argument, however, must be the only argument given

and cannot be combined with other arguments.

See also: MULTIPLE_VAR_ARGS.

INVALID_INPUT_CHARACTER This is an invalid input character: ’X’. where X

is an (invalid) character.

Some characters cannot be used in a Python program, in particular Ger-

man umlauts and other accented characters. In such a case, the parser

reports this error.

INVALID_KEY_VALUE_PAIR This is an invalid key-value-pair.

This error indicates that in a dictionary literal such as {’a’: 1, ’b’: 2} ,

either the key or the value (or both) is invalid.

PhD-Thesis, Tobias Kohn, 2017

183

INVALID_NAME This is an invalid name: ’X’. where X is the invalid name.

Particularly in the beginning, students must first learn that valid names

are restricted to a subset of all characters and cannot contain, for in-

stance, hyphens, dots or spaces. In the case of function definitions, the

parser tries to read even invalid names and then reports that the name

is invalid and must be corrected.

INVALID_AUGASSIGN_TARGET This expression is not a valid target for aug-

mented assignment.

See INVALID_ASSIGNMENT.

INVALID_STRING_PREFIX This is an invalid string prefix: ’X’. where X is the

invalid prefix.

There are only a few valid string prefixes in Python such as r or b and

combinations. The actual reason for this error, however, might also be a

forgotten operator.

METHOD_WITHOUT_SELF A method requires a ’self ’-parameter.

Python requires methods to explicitely have “self” or “this” as the first

parameter in methods (even though it is then not given as an argument).

If a method has no parameters or the first parameter is not called “self”

the parser reports this error.

Some Python libraries use “s” instead of “self” but this, again, is bad

practice for novice programmers.

MISMATCHED_CLOSING_BRACKET There are mismatched brackets or paren-

theses: expected ’X’ but found ’X’. where each X is a bracket.

Each opening/left bracket or parenthesis must be matched with a corre-

spondings right/closing bracket. If the two brackets do not fit together

(e. g., (]), the parser reports this error.

PhD-Thesis, Tobias Kohn, 2017

184 SYNTAX ERRORS

In some special cases, the parser is able to determine that the two mis-

matched brackets are not supposed to fit together but that the error is

due to malformed nesting. For instance, in the case of ([1, 2)] the

parser finds that the two closing/right brackets seems to be swapped

and reports SWAPPED_TOKENS.

MISPLACED_ASSIGN The assignment ’X’ cannot occur as part of an expression.

where X is an assignment operator such as =.

Due to a misconception about assignments, some students try to write

the formula x1 = x0 · 3 + 1 as (x *= 3) + 1. In such cases, the parser

will report that the assignment cannot be part of an expression.

MISSING_ASSIGNMENT There seems to be an assignment missing.

While parsing a statement, the parser might get stuck after having read

only one token with other tokens left to be read. The usual error to re-

port in such circumstances is the “no viable alternatives”. Before report-

ing this error, however, the parser tries to fix the statement in a series of

different attempts, given that the first token of the statement is a name.

The name beginning the statement might be a misspelled keyword (in

particular print). In such a case the parser fixes the keyword and re-

ports a MISSPELLED_KEYWORD. The name could also be merged with

the following token to form a longer name. If this succeeds and the re-

sulting name is used elsewhere in the program, the parser reports an

EXTRA_SPACE.

Finally, the parser checks if the line contains an assignment operator later

on. If one is found, it reports an EXTRA_SPACE_OR_MISSING_COMMA.

Otherwise, if the name is a function, it reports MISSING_PARENTHESES

or assumes that the assignment operator is missing.

See also: MISSING_OPERATOR_OR_COMMA.

PhD-Thesis, Tobias Kohn, 2017

185

MISSING_ASSIGNMENT_SOURCE The assignment is missing a source expres-

sion.

An assignment with a missing source is of the form x = without a value

or expression on the right.

MISSING_BODY There is a body or indentation missing.

Compound statements such as if, while or def need a body of state-

ments following the colon (an empty body would have to be written

using pass). When the parser does not find such a body or suite, it

might be because the body is indeed missing or because the body is not

properly indented.

MISSING_COMMA There is a comma missing.

A missing comma is reported when parsing parameters or arguments.

See also: MISSING_OPERATOR_OR_COMMA.

MISSING_COMPARISON There is a comparison missing.

The parser will always report this error if, after an if or while there is

immediately a colon following, without any test.

In “strict mode” the parser will also report this error in case a test is an

expression (calculation) but has no comparison, e. g., if x+1: .

MISSING_DOT There seems to be a dot missing.

See EXTRA_SPACE.

MISSING_LEFT_BRACKET There is a missing left bracket or parenthesis: ’X’.

where X is the missing bracket.

If the parser detects an extra right/closing bracket it checks if it can find a

position to insert a left bracket. If not successful a EXTRA_RIGHT_BRACKET

is reported. The second cause for this error is a missing left parenthesis

inside a function definition.

See also: MISSING_LEFT_PARENTHESIS, EXTRA_RIGHT_BRACKET.

PhD-Thesis, Tobias Kohn, 2017

186 SYNTAX ERRORS

MISSING_LEFT_PARENTHESIS There is a missing left parenthesis ’(’.

See MISSING_LEFT_BRACKET.

MISSING_OPERATOR_OR_COMMA There is an operator or comma missing.

There are two situations where the parser will report this error. First, if a

number is immediately followed by a name or a left parenthesis. This er-

ror is mainly due to mathematical notation creeping into programming:

in math it is common to write, e. g., 2x instead of 2 · x, but in Python the

*-operator is necessary.

The second situation is inside an expression as in, e. g., if x y == 1 .

Note that the pattern x y as a statement is reported as a

MISSING_ASSIGNMENT.

See also: MISSPELLED_NUMBER.

MISSING_PARENTHESES There seem to be parentheses missing.

Among the programming languages frequently used in introductory classes

are not only Python and Java, but also Lisp-related languages such as

Scheme or Logo. In Lisp, however, the arguments to a function are sep-

arated by space only and do not require parentheses. Hence, when the

parser detects a statement starting with the name of a function and an

expression following, it reports that there are parentheses missing. For

instance, instead of left 90 you should write left(90) in Python.

MISSING_RIGHT_BRACKET There is a closing bracket or parenthesis missing:

’X’. where X is the missing bracket.

See MISSING_LEFT_BRACKET.

MISSING_SPACE There is a space missing.

In cases where a keyword is concatenated with a name or number di-

rectly following the parser might detect the keyword nonetheless and

report that there is a space missing. More precisely, the parser is looking

PhD-Thesis, Tobias Kohn, 2017

187

for this pattern in comparisons with in or is, or for any line starting with

a name that turns out to be invalid syntax. For instance, if will detect a

deffoo(): .

See also: EXTRA_SPACE, MISSPELLED_KEYWORD.

MISSING_TOKEN Missing ’X’. where X is the token missing.

This general error is reported when inserting the specific token allows

the parser to continue. The parser will only report this error if no other

more specific syntax error has been identified.

MISSPELLED_KEYWORD Misspelled keyword ’X’ instead of ’X’. where X are the

given name and the closest keyword, respectively.

If a name leads to a syntax error, the parser checks if that name could

be corrected to a keyword in such a way that parsing could continue.

This is mostly the case at the beginning of a line or when the gram-

mar clearly specifies that a given keyword is expected (e. g., the in in

for x in list).

In order to avoid false positives, the parser will report this error only in

cases where a minor change is necessary: correcting lower-/uppercase,

swapped letters, a missing or an extra letter. Some cases require the

parser to take the current context into consideration: for instance, it is

very difficult to distinguish between misspelled for and from.

In addition to keywords, the parser can also correct some operators. For

instance, when using a binary left shift << where, in fact, a comparison

< would be expected. Again, some cases are very hard or even impossi-

ble to detect, such as, e. g., x=-1 , which might indeed be a misspelled

x-= .

See also MISSING_ASSIGNMENT.

MISSPELLED_NUMBER There seems to be a typo inside your number.

A typical example of a misspelled number is something like 123x456.

PhD-Thesis, Tobias Kohn, 2017

188 SYNTAX ERRORS

Actually, this error might be due to more than just a typo. A novice pro-

grammer might want to use an x to multiply two numbers, for instance.

Reporting a typo inside the number should, however, give a hint as how

Python is interpreting the given tokens.

See also: MISSING_OPERATOR_OR_COMMA.

MISSPELLED_OPERATOR Misspelled operator ’X’ instead of ’X’.

See MISSPELLED_KEYWORD.

MULTIPLE_VAR_ARGS Only one unpacking var/keyword-argument is allowed.

When calling a function, you can use the elements of a list or dictionary

as individual arguments for the call. However, you can only use the

elements of one list for this, e. g., foo(*list1, *list2) is invalid.

See also: INVALID_GENERATOR_ARG, MULTIPLE_VAR_PARAMS,

VARARG_AFTER_KEYWORD_ARG.

MULTIPLE_VAR_PARAMS Only one unpacking var/keyword-parameter is al-

lowed.

When defining a function, you can specify that all remaining positional

or keyword arguments should be collected into a list or dictionary. How-

ever, there can only be one such list or dictionary.

See also: MULTIPLE_VAR_ARGS.

NAME_EXPECTED There is a name required here.

There are several situations that would lead to this error being reported.

For instance, when in a for-loop the variable between for and in is

missing. Of particular interest with novice programmers might be the

case of parameters in a function’s definition. Some students try to re-

place the parameters with expressions to directly assign values to them

or modify the parameters. An example of this is def foo(2*x, y) .

PhD-Thesis, Tobias Kohn, 2017

189

NO_END_NEEDED There is no ’end’ needed or allowed in Python.

Many programming languages use an end to mark the end of a block/-

suite. Python, however, has no marks for the end of a suite other than

by indentation.

See also: FOREIGN_TOKEN, FOREIGN_SYNTAX.

NO_PARAM_DEFAULT_ALLOWED An unpacking parameter cannot have a de-

fault value.

Parameters in a function’s definition can have default values assigned to

them. However, the parameters for collecting all remaining positional

and keyword arguments, respectively, cannot have such default values.

NO_VIABLE_ALTERNATIVE There is no viable alternative at ’X’. where X is the

token where parsing is not possible anymore.

This is one of the most generic and least frequent error messages re-

ported. The parser reports no viable alternative only if it was unable to

identify any other syntax error, but cannot continue with parsing at the

present position. As a fallback message, the situation where it is actually

reported depends on all the other syntax errors and might vary as the

parser is further developed.

NUMBER_NOT_SUBSCRIPTABLE A number cannot have a subscript.

The cause for this error message is unlikely to be an attempt to use a

subscript on a number. Rather, there might be a missing operator or

comma. It could also be the cause of foreign syntax, as square brackets

are used in “Logo” in situations like repeat 4 [fd 100 lt 90] . The

parser reports this error, nonetheless, as it gives the student a direct

feedback about how the given tokens are interpreted in Python.

See also: FOREIGN_SYNTAX.

PARAM_AFTER_KEYWORD_PARAM The unpacking keyword-parameter must

come last.

PhD-Thesis, Tobias Kohn, 2017

190 SYNTAX ERRORS

Python allows a special parameter to collect all remaining keyword ar-

guments. This parameter **kwargs, however, must come last of all pa-

rameters.

PARAMS_REQUIRED Parameter(s) required but ’X’ found. where X is a token,

mostly a colon.

When a function does not have any parameters, both the definition and

the call still require empty parentheses. In case of a function definition

without parentheses, the parser reports this error.

POS_ARG_AFTER_KEYWORD Positional arguments cannot follow keyword ar-

guments.

When calling a function, all positional arguments must come before any

keyword argument.

See also: POS_PARAM_AFTER_KEYWORD.

POS_PARAM_AFTER_KEYWORD Parameters without defaults cannot follow

parameters with default value or unpacking parameters.

When definition a function, mandatory parameters (those without de-

fault value) must precede other parameters such as those with default

value or varargs.

See also: POS_ARG_AFTER_KEYWORD.

PRINT_DEST_EXPECTED ’>>’ must be followed by a valid output destination.

In Python 2 you can specify the destination of a print-statement via the

>>-operator. When this operator is present, it requires a valid destination

(while the print-statement itself does not need any arguments).

PRINT_IS_STATEMENT In Python 2.x ’print’ is a statement and cannot be called

with keyword arguments.

The is the counterpart to PRINT_NEEDS_PARENTHESES. It is reported

when print is treated as a function in Python 2.

PhD-Thesis, Tobias Kohn, 2017

191

See also: PRINT_NEEDS_PARENTHESES.

PRINT_NEEDS_PARENTHESES In Python 3.x ’print’ is a function and requires

parentheses.

One of the most obvious differences between Python 2 and 3 is that

print has become a function instead of a statement, hence requiring

parentheses. Since there are many tutorials for both versions of Python,

the parser provides this hint.

PYTHON_2_FEATURE_NOT_AVAILABLE This feature from Python 2.x is not

available.

While Python 2 allows parameters to be tuples of names, this feature has

been removed in Python 3. Accordingly, def foo(a, (b, c)) is legal

in Python 2, but not in Python 3.

PYTHON_3_FEATURE_NOT_AVAILABLE This feature from Python 3.x is not

available.

Python 3 has extended the syntax for unpacking using star-notation. The

parser recognizes such syntax and reports that this is not available in

Python 2.

RETURN_OUTSIDE_FUNCTION A ’return’-statement cannot occur outside a

function.

Standard error.

See also: USE_BREAK_INSTEAD_OF_RETURN.

SINGLE_EQUAL_SIGN_EXPECTED Use a single equal sign ’=’ for assignment.

Just as some students use a single equal sign for comparisons, some then

wrongly use the double equal sign for assignment. Hence, the parser

reports this error upon detecting the pattern where a statement is just a

comparison for equality with a name on the left hand side.

SEE ALSO: DOUBLE_EQUAL_SIGN_EXPECTED

PhD-Thesis, Tobias Kohn, 2017

192 SYNTAX ERRORS

SUPERFLUOUS_COMPARISON The comparison to ’X’ is superfluous here. where

X is either True or False.

Some students write test always with a comparison to True and False,

such as

if x > 0 == True . The parser detects these tests and reports that

these comparisons are not necessary or that the student should use not.

See also: USE_NOT_INSTEAD_OF_FALSE.

SWAPPED_TOKENS These tokens seem to be swapped: ’X’ and ’X’. where X

denote two tokens, mostly two brackets.

The parser tries to make sure that brackets are correct at an early stage

in the parsing process. If possible, missing or extra brackets are inserted

or removed, respectively. But the parser also detects patterns such as

([...)] with two of the brackets swapped. In such cases, the parser

reports the swapped brackets instead of inserting/deleting.

TOKEN_REQUIRED ’X’ required but ’X’ found. where X are two tokens.

This is message is reported when a specific token is required but some-

thing else has been found.

TUPLE_NEEDS_PARENS This tuple needs to be enclosed in parentheses.

See: CANNOT_TEST_TUPLE.

UNEXPECTED_END_OF_INPUT Unexpected end of line or input.

This error is reported whenever the parser requires further input to

complete parsing the current statement. An instance of such a case is

x = 1 + with a missing second/right operand.

UNEXPECTED_KEYWORD The keyword ’X’ cannot occur at this point. where

X is a keyword.

PhD-Thesis, Tobias Kohn, 2017

193

Similar to ELSE_WITHOUT_IF this error is reported when a keyword

such as finally occurs outside of a valid context, i. e., without the pre-

ceding try.

UNREACHABLE_CODE This code is unreachable and will never be executed.

Keywords such as return, break or continue cause the current block

of code to be left immediately. Students, however, often assume that, be-

fore actually exiting a loop, say, Python will still execute the statements

following the break-statement. Hence, the parser reports code after an

exiting statement as unreachable.

UNTERMINATED_STRING This string is unterminated.

If a string literal contains line breaks, the parser reports that the string

has not been terminated. This does not apply, of course, for multi-line

strings starting with triple quotes.

USE_AND_NOT_COMMA Multiple comparisons are combined by ’and’ or ’or’

instead of a comma.

The parser tries to carefully examine tests in comparisons. If it finds that

a comparison is followed by a comma as in, e. g., if a > 0, b > 0 it

will report this error.

See also: USE_COMMA_NOT_AND.

USE_BREAK_INSTEAD_OF_RETURN Use ’break’ instead of ’return’ to exit a

loop.

Students sometimes confuse break and return and use one for the

other. In the case where a break-statement is used outside a loop but in-

side a function, the parser reports a USE_RETURN_INSTEAD_OF_BREAK.

Likewise in the case of a return-statement inside a loop but not inside

a function, the parser reports this error.

See also: USE_RETURN_INSTEAD_OF_BREAK, RETURN_OUTSIDE_FUNCTION,

BREAK_OUTSIDE_LOOP.

PhD-Thesis, Tobias Kohn, 2017

194 SYNTAX ERRORS

USE_COMMA_NOT_AND Multiple values are separated by comma instead of

’and’.

It has long been reported that the english words used for keywords some-

times suggest a wrong meaning to novice programmers. One such in-

stance is where a novice programmer writes return a and b in order

to return both values a and b. Unless the parser finds these values to be

Booleans, it will report that the programmer should rather use a comma

instead of and in this case.

See also: USE_AND_NOT_COMMA.

USE_ELIF_INSTEAD_OF_ELSE Use ’elif ’ instead of ’else’.

The parser will report when an if-statement has more than one else-

branch. However, if the first else-branch also has a comparison fol-

lowing it, the parser assumes that the else should indeed be an elif

instead.

See also: USE_ELIF_INSTEAD_OF_ELSE_IF, DOUBLE_ELSE,

ELSE_WITH_COMPARISON.

USE_ELIF_INSTEAD_OF_ELSE_IF Use ’elif ’ instead of ’else if ’.

Programming languages other than Python often use else if instead of

a dedicated elif. To help programmers coming from such languages,

the parser reports that an else if must be written as elif.

See also: USE_ELIF_INSTEAD_OF_ELSE, DOUBLE_ELSE.

USE_EQ_INSTEAD_OF_NEQ* Use ’== X’ instead of ’!= X’. where X is True

and False, respectively.

As students tend to use convoluted constructs, the parser tries to point

some of these out and help the student in finding a simpler alternative.

USE_MOD_NOT_DIV Use ’%’ instead of ’/’ to check for divisibility.

PhD-Thesis, Tobias Kohn, 2017

195

Modulo/remainder operation seems to be an inherently difficult topic

for students. They frequently end up writing if x / 2 == 0 instead

of if x % 2 == 0 . Dividing a variable and then checking if the result

is zero or non-zero does not make sense as one could test the variable

x directly. The parser therefore warns that the programmer probably

intended to use the remainder operator instead of a division.

USE_NOT_INSTEAD_OF_FALSE* Use ’not’ rather than a comparison to ’X’.

where X is either True or False.

See: SUPERFLUOUS_COMPARISON.

USE_REPEAT_INSTEAD_OF_WHILE* Use ’repeat’ instead of ’while’.

We have extended Python by the keyword repeat as a simple looping

structure for repeating the code a given number of times. One could

then write repeat 3: print "." to have three dots printed. As some

students have already heard that a loop is done using while, they then

go on to write something like while (3) . Hence, the parser checks for

while-tests consisting of only a single number and then reports that the

programmer should rather use repeat.

USE_RETURN_INSTEAD_OF_BREAK Use ’return’ instead of ’break’ to exit a

function.

See USE_BREAK_INSTEAD_OF_RETURN.

USELESS_COMPUTATION* The result of this expression is never used.

While a useless statement has no side effects at all, a useless computation

might actually include function calls. However, the overall statement is

an expression whose result is not used, e. g., 2 * foo() .

See also: USELESS_STATEMENT.

USELESS_STATEMENT* This statement is useless: it has no effect.

PhD-Thesis, Tobias Kohn, 2017

196 SYNTAX ERRORS

Python features an interactive console which allows to quickly evaluate

expressions such as x * 2 . Such expressions, however, do not make

sense in a script/program. The parser therefore points out that expres-

sions without side effects are useless, even though they are actually valid

in Python. A special case are identifiers, which might be intended to call

a function.

In fact, the intent behind x * 2 might be to double the value of x.

Therefore, if the parser detects a useless statement beginning with a

name and a subsequent operation, it proposes to turn the operation into

an augmented assignment. In this case that would be x *= 2 .

See also: CALL_NEEDS_PARENTHESES, USELESS_COMPUTATION.

USELESS_STMT_USE_AUG_ASSIGN* This statement is useless. Did you mean

’X=’?

See USELESS_STATEMENT.

VARARG_AFTER_KEYWORD_ARG The unpacking var-argument must precede

the unpacking keyword-argument.

Python allows for lists and dictionaries to be unpacked so that their el-

ements can act as individual arguments to a function. For instance,

you might write foo(*mylist, **mydict) . As with positional and

keyword-arguments, the list unpacking must precede the dictionary un-

packing in such a case.

VARARG_NOT_ALLOWED Unpacking var/keyword-arguments are not allowed

at this point.

This error is only reported in Python 3 when trying to use a star inside

the bases of a class.

WRONG_BRACKET Wrong parenthesis or bracket: ’X’ is required instead of ’X’.

where X are two kinds of brackets.

PhD-Thesis, Tobias Kohn, 2017

197

If the programmer clearly uses the wrong brackets as in, e. g., def foo[x] ,

the parser will report this error.

WRONG_TOKEN Wrong symbol ’X’ instead of ’X’. where X are the wrong and

the correct token.

This errors is reported when, e. g., a comma is required, but a dot found,

and replacing the tokens fixes the problem. In contrast to TOKEN_REQUIRED,

the correct token is not required but a viable option at this point.

YIELD_OUTSIDE_FUNCTION A ’yield’-expression cannot occur outside a func-

tion.

Standard error.

PhD-Thesis, Tobias Kohn, 2017

198 SYNTAX ERRORS

PhD-Thesis, Tobias Kohn, 2017

Python’s Official Grammar

For the reader’s convenience we reprint Python’s official grammar as can be

found in [50], chapter 9 “Full Grammar specification”. We have omitted some

annotations that are irrelevant for this thesis.

Grammar for Python

[...]

Start symbols for the grammar:

single_input is a single interactive statement;

file_input is a module or sequence of commands read from an input file;

eval_input is the input for the eval() and input() functions.

NB: compound_stmt in single_input is followed by extra NEWLINE!

single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE

file_input: (NEWLINE | stmt)* ENDMARKER

eval_input: testlist NEWLINE* ENDMARKER

decorator: ’@’ dotted_name [’(’ [arglist] ’)’] NEWLINE

decorators: decorator+

decorated: decorators (classdef | funcdef)

funcdef: ’def’ NAME parameters ’:’ suite

parameters: ’(’ [varargslist] ’)’

varargslist: ((fpdef [’=’ test] ’,’)*

(’*’ NAME [’,’ ’**’ NAME] | ’**’ NAME) |

fpdef [’=’ test] (’,’ fpdef [’=’ test])* [’,’])

fpdef: NAME | ’(’ fplist ’)’

fplist: fpdef (’,’ fpdef)* [’,’]

stmt: simple_stmt | compound_stmt

simple_stmt: small_stmt (’;’ small_stmt)* [’;’] NEWLINE

small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |

PhD-Thesis, Tobias Kohn, 2017

200 PYTHON’S OFFICIAL GRAMMAR

import_stmt | global_stmt | exec_stmt | assert_stmt)

expr_stmt: testlist (augassign (yield_expr|testlist) |

(’=’ (yield_expr|testlist))*)

augassign: (’+=’ | ’-=’ | ’*=’ | ’/=’ | ’%=’ | ’&=’ | ’|=’ | ’^=’ |

’<<=’ | ’>>=’ | ’**=’ | ’//=’)

For normal assignments, additional restrictions enforced by the interpreter

print_stmt: ’print’ ([test (’,’ test)* [’,’]] |

’>>’ test [(’,’ test)+ [’,’]])

del_stmt: ’del’ exprlist

pass_stmt: ’pass’

flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt

break_stmt: ’break’

continue_stmt: ’continue’

return_stmt: ’return’ [testlist]

yield_stmt: yield_expr

raise_stmt: ’raise’ [test [’,’ test [’,’ test]]]

import_stmt: import_name | import_from

import_name: ’import’ dotted_as_names

import_from: (’from’ (’.’* dotted_name | ’.’+)

’import’ (’*’ | ’(’ import_as_names ’)’ | import_as_names))

import_as_name: NAME [’as’ NAME]

dotted_as_name: dotted_name [’as’ NAME]

import_as_names: import_as_name (’,’ import_as_name)* [’,’]

dotted_as_names: dotted_as_name (’,’ dotted_as_name)*

dotted_name: NAME (’.’ NAME)*

global_stmt: ’global’ NAME (’,’ NAME)*

exec_stmt: ’exec’ expr [’in’ test [’,’ test]]

assert_stmt: ’assert’ test [’,’ test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt

| funcdef | classdef | decorated

if_stmt: ’if’ test ’:’ suite (’elif’ test ’:’ suite)* [’else’ ’:’ suite]

while_stmt: ’while’ test ’:’ suite [’else’ ’:’ suite]

for_stmt: ’for’ exprlist ’in’ testlist ’:’ suite [’else’ ’:’ suite]

try_stmt: (’try’ ’:’ suite

((except_clause ’:’ suite)+

[’else’ ’:’ suite]

[’finally’ ’:’ suite] |

’finally’ ’:’ suite))

with_stmt: ’with’ with_item (’,’ with_item)* ’:’ suite

with_item: test [’as’ expr]

NB compile.c makes sure that the default except clause is last

except_clause: ’except’ [test [(’as’ | ’,’) test]]

suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:

PhD-Thesis, Tobias Kohn, 2017

201

[x for x in lambda: True, lambda: False if x()]

even while also allowing:

lambda x: 5 if x else 2

(But not a mix of the two)

testlist_safe: old_test [(’,’ old_test)+ [’,’]]

old_test: or_test | old_lambdef

old_lambdef: ’lambda’ [varargslist] ’:’ old_test

test: or_test [’if’ or_test ’else’ test] | lambdef

or_test: and_test (’or’ and_test)*

and_test: not_test (’and’ not_test)*

not_test: ’not’ not_test | comparison

comparison: expr (comp_op expr)*

comp_op: ’<’|’>’|’==’|’>=’|’<=’|’<>’|’!=’|’in’|’not’ ’in’|’is’|’is’ ’not’

expr: xor_expr (’|’ xor_expr)*

xor_expr: and_expr (’^’ and_expr)*

and_expr: shift_expr (’&’ shift_expr)*

shift_expr: arith_expr ((’<<’|’>>’) arith_expr)*

arith_expr: term ((’+’|’-’) term)*

term: factor ((’*’|’/’|’%’|’//’) factor)*

factor: (’+’|’-’|’~’) factor | power

power: atom trailer* [’**’ factor]

atom: (’(’ [yield_expr|testlist_comp] ’)’ |

’[’ [listmaker] ’]’ |

’{’ [dictorsetmaker] ’}’ |

’‘’ testlist1 ’‘’ |

NAME | NUMBER | STRING+)

listmaker: test (list_for | (’,’ test)* [’,’])

testlist_comp: test (comp_for | (’,’ test)* [’,’])

lambdef: ’lambda’ [varargslist] ’:’ test

trailer: ’(’ [arglist] ’)’ | ’[’ subscriptlist ’]’ | ’.’ NAME

subscriptlist: subscript (’,’ subscript)* [’,’]

subscript: ’.’ ’.’ ’.’ | test | [test] ’:’ [test] [sliceop]

sliceop: ’:’ [test]

exprlist: expr (’,’ expr)* [’,’]

testlist: test (’,’ test)* [’,’]

dictorsetmaker: ((test ’:’ test (comp_for | (’,’ test ’:’ test)* [’,’])) |

(test (comp_for | (’,’ test)* [’,’])))

classdef: ’class’ NAME [’(’ [testlist] ’)’] ’:’ suite

arglist: (argument ’,’)* (argument [’,’]

|’*’ test (’,’ argument)* [’,’ ’**’ test]

|’**’ test)

The reason that keywords are test nodes instead of NAME is that using NAME

results in an ambiguity. ast.c makes sure it’s a NAME.

PhD-Thesis, Tobias Kohn, 2017

202 PYTHON’S OFFICIAL GRAMMAR

argument: test [comp_for] | test ’=’ test

list_iter: list_for | list_if

list_for: ’for’ exprlist ’in’ testlist_safe [list_iter]

list_if: ’if’ old_test [list_iter]

comp_iter: comp_for | comp_if

comp_for: ’for’ exprlist ’in’ or_test [comp_iter]

comp_if: ’if’ old_test [comp_iter]

testlist1: test (’,’ test)*

not used in grammar, but may appear in "node < sß spassed from Parser to Compiler

encoding_decl: NAME

yield_expr: ’yield’ [testlist]

PhD-Thesis, Tobias Kohn, 2017

Bibliography

[1] A. Altadmri and N. C. Brown. 37 million compilations: Investigating

novice programming mistakes in large-scale student data. In Proceedings

of the 46th ACM Technical Symposium on Computer Science Education,

SIGCSE ’15, pages 522–527, New York, NY, USA, 2015. ACM.

[2] H. Amann and J. Escher. Analysis I. Birkhäuser, 1998.

[3] J. Arnold, T. Kohn, and A. Plüss. Programming concepts in Python

with TigerJython. http://www.tigerjython.ch/engl/index.

php, 2016. Accessed 2016-11-27.

[4] P. Bayman and R. E. Mayer. A diagnosis of beginning programmers’

misconceptions of BASIC programming statements. Commun. ACM,

26(9):677–679, Sept. 1983.

[5] B. A. Becker. An effective approach to enhancing compiler error mes-

sages. In Proceedings of the 47th ACM Technical Symposium on Comput-

ing Science Education, SIGCSE ’16, pages 126–131, New York, NY, USA,

2016. ACM.

[6] H.-J. Böckenhauer and J. Hromkovič. Formale Sprachen. Springer

Vieweg, 2013.

[7] E. Börger and R. Stärk. Abstract State Machines. Springer, 2003.

PhD-Thesis, Tobias Kohn, 2017

http://www.tigerjython.ch/engl/index.php
http://www.tigerjython.ch/engl/index.php

204 BIBLIOGRAPHY

[8] N. C. Brown and A. Altadmri. Investigating novice programming mis-

takes: Educator beliefs vs. student data. In Proceedings of the Tenth

Annual Conference on International Computing Education Research, ICER

’14, pages 43–50, New York, NY, USA, 2014. ACM.

[9] P. Byckling and J. Sajaniemi. Roles of variables and programming skills

improvement. SIGCSE Bull., 38(1):413–417, Mar. 2006.

[10] F. J. Damerau. A technique for computer detection and correction of

spelling errors. Commun. ACM, 7(3):171–176, Mar. 1964.

[11] P. Denny, A. Luxton-Reilly, and D. Carpenter. Enhancing syntax error

messages appears ineffectual. In Proceedings of the 2014 Conference on

Innovation and Technology in Computer Science Education, ITiCSE ’14,

pages 273–278, New York, NY, USA, 2014. ACM.

[12] P. Denny, A. Luxton-Reilly, and E. Tempero. All syntax errors are not

equal. In Proceedings of the 17th ACM Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE ’12, pages 75–80,

New York, NY, USA, 2012. ACM.

[13] B. Du Boulay. Some difficulties of learning to program. Journal of Edu-

cational Computing Research, 2:57–73, 1986.

[14] B. Du Boulay, T. O’Shea, and J. Monk. The black box inside the glass

box. Int. J. Hum.-Comput. Stud., 51(2):265–277, Aug. 1999.

[15] L. Grandell, M. Peltomäki, R.-J. Back, and T. Salakoski. Why compli-

cate things?: Introducing programming in high school using Python. In

Proceedings of the 8th Australasian Conference on Computing Education

- Volume 52, ACE ’06, pages 71–80, Darlinghurst, Australia, Australia,

2006. Australian Computer Society, Inc.

[16] P. Gross and K. Powers. Evaluating assessments of novice programming

environments. In Proceedings of the First International Workshop on Com-

PhD-Thesis, Tobias Kohn, 2017

BIBLIOGRAPHY 205

puting Education Research, ICER ’05, pages 99–110, New York, NY, USA,

2005. ACM.

[17] D. Grune and C. J. H. Jacobs. Parsing Techniques. A practical guide.

Springer, 2008.

[18] P. J. Guo. Python is now the most popular in-

troductory teaching language at top U.S. universi-

ties. http://cacm.acm.org/blogs/blog-cacm/

176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/

fulltext. Accessed: 2016-10-21.

[19] P. J. Guo. Online python tutor: Embeddable web-based program vi-

sualization for CS education. In Proceeding of the 44th ACM Technical

Symposium on Computer Science Education, SIGCSE ’13, pages 579–584,

New York, NY, USA, 2013. ACM.

[20] Y. Gurevich. Sequential abstract-state machines capture sequential algo-

rithms. ACM Trans. Comput. Logic, 1(1):77–111, July 2000.

[21] L. J. Halbeisen. Combinatorial Set Theory. Springer, 2012.

[22] A. Heck. Variables in computer algebra, mathematics, and science. In

International Journal of Computers in Mathematics Education, 8 No, pages

195–221, 2001.

[23] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, Oct. 1969.

[24] M. Hristova, A. Misra, M. Rutter, and R. Mercuri. Identifying and correct-

ing java programming errors for introductory computer science students.

SIGCSE Bull., 35(1):153–156, Jan. 2003.

[25] J. Hromkovič. Einführung in die Programmierung mit LOGO.

Vieweg+Teubner, 2010.

PhD-Thesis, Tobias Kohn, 2017

http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-u-s-universities/fulltext

206 BIBLIOGRAPHY

[26] J. Hromkovič, T. Kohn, D. Komm, and G. Serafini. Combining the Power of

Python with the Simplicity of Logo for a Sustainable Computer Science Ed-

ucation, pages 155–166. Springer International Publishing, Cham, 2016.

[27] J. Jackson, M. Cobb, and C. Carver. Identifying top java errors for novice

programmers. In Proceedings Frontiers in Education 35th Annual Confer-

ence, pages T4C–T4C, Oct 2005.

[28] K. Jensen and N. Wirth. PASCAL User Manual and Report. Springer-Verlag

New York, Inc., New York, NY, USA, 1974.

[29] The Jython project. http://www.jython.org/, 2016. Accessed:

2016-11-19.

[30] T. Kohn. TigerJython. http://jython.tobiaskohn.ch/, 2016. Ac-

cessed 2016-11-27.

[31] T. Kohn. Variable evaluation: An exploration of novice program-

mers’ understanding and common misconceptions. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education,

SIGCSE ’17, pages 345–350, New York, NY, USA, 2017. ACM.

[32] M. Kölling. The greenfoot programming environment. Trans. Comput.

Educ., 10(4):14:1–14:21, Nov. 2010.

[33] M. Kolling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ system

and its pedagogy. Journal of Computer Science Education, Special issue

on Learning and Teaching Object Technology, 13(4):182–196, December

2003.

[34] M. Kuittinen and J. Sajaniemi. Teaching roles of variables in elementary

programming courses. SIGCSE Bull., 36(3):57–61, June 2004.

[35] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A study of the difficulties

of novice programmers. ITiCSE ’05 Proceedings of the 10th annual SIGCSE

PhD-Thesis, Tobias Kohn, 2017

http://www.jython.org/
http://jython.tobiaskohn.ch/

BIBLIOGRAPHY 207

conference on Innovation and technology in computer science education,

pages 14–18, 2005.

[36] R. Lister. Concrete and other neo-Piagetian forms of reasoning in the

novice programmer. In Proceedings of the Thirteenth Australasian Com-

puting Education Conference - Volume 114, ACE ’11, pages 9–18, Dar-

linghurst, Australia, Australia, 2011. Australian Computer Society, Inc.

[37] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm,

R. McCartney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon, and

L. Thomas. A multi-national study of reading and tracing skills in novice

programmers. SIGCSE Bull., 36(4):119–150, June 2004.

[38] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating the viability of

mental models held by novice programmers. SIGCSE Bull., 39(1):499–

503, Mar. 2007.

[39] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating and improv-

ing the models of programming concepts held by novice programmers.

Computer Science Education, 21(1):57–80, 2011.

[40] B. Manaris and A. R. Brown. Making Music with Computers: Creative

Programming in Python. CRC Press, 2014.

[41] G. Marceau, K. Fisler, and S. Krishnamurthi. Measuring the effectiveness

of error messages designed for novice programmers. In Proceedings of the

42Nd ACM Technical Symposium on Computer Science Education, SIGCSE

’11, pages 499–504, New York, NY, USA, 2011. ACM.

[42] L. McIver and D. Conway. Seven deadly sins of introductory program-

ming language design. In Proceedings of the 1996 International Confer-

ence on Software Engineering: Education and Practice (SE:EP ’96), SEEP

’96, pages 309–, Washington, DC, USA, 1996. IEEE Computer Society.

PhD-Thesis, Tobias Kohn, 2017

208 BIBLIOGRAPHY

[43] I. Milne and G. Rowe. Difficulties in learning and teaching programming

– views of students and tutors. Education and Information Technologies,

7(1):55–66, Mar. 2002.

[44] D. Muller, J. Bewes, M. Sharma, and P. Reimann. Saying the wrong

thing: improving learning with multimedia by including misconceptions.

Journal of Computer Assisted Learning, 24(2):144–155, 2008.

[45] M.-H. Nienaltowski, M. Pedroni, and B. Meyer. Compiler error messages:

What can help novices? In Proceedings of the 39th SIGCSE Technical

Symposium on Computer Science Education, SIGCSE ’08, pages 168–172,

New York, NY, USA, 2008. ACM.

[46] U. Nikula, J. Sajaniemi, M. Tedre, and S. Wray. Python and roles of vari-

ables in introductory programming: Experiences from three educational

institutions. JITE, 6:199–214, 2007.

[47] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J. Bennedsen,

M. Devlin, and J. Paterson. A survey of literature on the teaching of

introductory programming. SIGCSE Bull., 39(4):204–223, Dec. 2007.

[48] A. Plüss. aplu.ch. http://www.aplu.ch/home/apluhomex.jsp,

2016. Accessed 2016-11-19.

[49] R. T. Putnam, D. Sleeman, J. A. Baxter, and L. K. Kuspa. A summary of

misconceptions of high school Basic programmers. Journal of Educational

Computing Research, 2(4):459–472, 1986.

[50] Python Software Foundation. The Python Language Reference. https:

//docs.python.org/2/reference/index.html, 2016. Ac-

cessed: 2016-09-29.

[51] P. Reutemann. Advanced data mining with

Weka. http://www.cs.waikato.ac.nz/ml/weka/

mooc/advanceddataminingwithweka/slides/

PhD-Thesis, Tobias Kohn, 2017

http://www.aplu.ch/home/apluhomex.jsp
https://docs.python.org/2/reference/index.html
https://docs.python.org/2/reference/index.html
http://www.cs.waikato.ac.nz/ml/weka/mooc/advanceddataminingwithweka/slides/Class5-AdvancedDataMiningWithWeka-2016.pdf
http://www.cs.waikato.ac.nz/ml/weka/mooc/advanceddataminingwithweka/slides/Class5-AdvancedDataMiningWithWeka-2016.pdf
http://www.cs.waikato.ac.nz/ml/weka/mooc/advanceddataminingwithweka/slides/Class5-AdvancedDataMiningWithWeka-2016.pdf

BIBLIOGRAPHY 209

Class5-AdvancedDataMiningWithWeka-2016.pdf. Accessed:

2016-11-27.

[52] A. Robins, J. Rountree, and N. Rountree. Learning and teaching pro-

gramming: a review and discussion. Computer Science Education,

13(2):137–172, 2003.

[53] G. V. Rossum and F. L. J. Drake. The Python Language Reference Manual.

Network Theory Ltd., 2011.

[54] R. Samurçay. The concept of variable in programming—its meaning and

use in problem-solving. Educational Studies in Mathematics, 16(2):143–

161, 1985.

[55] J. E. Savage. Models of Computation: Exploring the Power of Comput-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1st edition, 1997.

[56] E. Soloway and J. C. Spohrer. Studying the Novice Programmer. L. Erl-

baum Associates Inc., Hillsdale, NJ, USA, 1988.

[57] W. A. Stein. Sage mathematics software. http://www.sagemath.

org/, 2016. Accessed: 2016-11-19.

[58] W. Toomey. Quantifying the incidence of novice programmer’s

errors. http://minnie.tuhs.org/Programs/BlueJErrors/

arjen_draft.pdf, 2011. Accessed: 2016-09-29.

[59] Wikipedia. Brainfuck. https://en.wikipedia.org/wiki/

Brainfuck, 2016. Accessed: 2016-11-19.

[60] N. Wirth. The programming language Pascal. Acta Informatica, 1(1):35–

63, 1971.

[61] N. Wirth. Systematisches Programmieren: Eine Einführung. Leitfäden

der angewandten Mathematik und Mechanik - Teubner Studienbücher.

Vieweg+Teubner Verlag, 1993.

PhD-Thesis, Tobias Kohn, 2017

http://www.cs.waikato.ac.nz/ml/weka/mooc/advanceddataminingwithweka/slides/Class5-AdvancedDataMiningWithWeka-2016.pdf
http://www.cs.waikato.ac.nz/ml/weka/mooc/advanceddataminingwithweka/slides/Class5-AdvancedDataMiningWithWeka-2016.pdf
http://www.sagemath.org/
http://www.sagemath.org/
http://minnie.tuhs.org/Programs/BlueJErrors/arjen_draft.pdf
http://minnie.tuhs.org/Programs/BlueJErrors/arjen_draft.pdf
https://en.wikipedia.org/wiki/Brainfuck
https://en.wikipedia.org/wiki/Brainfuck

210 BIBLIOGRAPHY

PhD-Thesis, Tobias Kohn, 2017

Curriculum Vitae

Tobias Kohn
born on January 31, 1982 in Zurich, Switzerland

kohnt@inf.ethz.ch

Education

2012 – 2017

ETH Zurich

PhD in Computer Science

PhD studies at the chair of information technology

and education with focus on computer science edu-

cation at high school level.

2004 – 2012

ETH Zurich

Diploma for Higher Education

Teaching diploma for high school in mathematics.

2002 – 2008

ETH Zurich

Master of Science in Mathematics

The thesis “Self Similar Shrinkers in R3” is a study

of stationary solutions under mean curvature flow in

differential geometry. Advisor: Prof. Dr. T. Ilmanen.

PhD-Thesis, Tobias Kohn, 2017

212 CURRICULUM VITAE

Employment

2016 – present

ETH Zurich

Research/Teaching Assistant for CS education

Designing new teaching materials, and assisting in

the lectures “Fachdidaktik der Informatik”.

2008 – present

KZO Wetzikon

High School Teacher

Teaching mathematics and computer science from

grades 7 to 12. Received tenured position in 2010.

2006 – 2007

ETH Zurich

Teaching Assistant/Tutor in Mathematics

Tutor in mathematics for environmental sciences.

2005 – 2008

Various High Schools

Substitute Teacher

Taught mathematics, physics and programming as a

short-term substitute teacher at multiple high schools

throughout Switzerland.

Publication

Combining the power of python with the sim-

plicity of logo for a sustainable computer science

education

J. Hromkovič et. al., 2016 [26]

Variable Evaluation: an Exploration of Novice

Programmers’ Understanding and Common

Misconceptions

T. Kohn, 2017 [31]

PhD-Thesis, Tobias Kohn, 2017

	Introduction
	Introduction
	Theses and Contributions
	Organization of the Dissertation

	The Educational Python-Environment TigerJython
	Introduction
	Building Upon Classroom Experience
	Input and Output
	Location of Error Messages

	Jython
	Controlling Program Execution in Jython
	Changes to Jython

	Debugger
	Variables and Types in Python
	Displaying Frames and Variables

	The Python Programming Language
	Introduction
	A Short Summary of Python's Basic Features
	Python's Terminology

	Examples of Python Programs
	Variables and the Type System
	Python's Grammar
	Expressions
	Statements

	Changes to the Python Programming Language

	The Models of Mathematics and Programming
	Introduction
	Organization

	Variables in Mathematics
	Variables in Programming
	Functions
	Conclusion

	An Investigation of the Concept of Variables in the Context of Programming Education
	Introduction
	Theses
	Organization

	Related Work about Students' Misconceptions
	Studies about Misconceptions
	Recent Studies on Difficulties

	Students' Misconceptions about Variable Assignment and Evaluation
	Methodology
	Summary
	Quadratic Equations [P1]
	The Graph of a Function (1) [P2]
	The Graph of a Function (2) [P3]
	Tracing a Program [P4]

	Discussion
	Computational Models in Mathematics and Programming
	Students' Model
	Threats to Validity

	Improving the Students' Understanding
	Related Work
	Teaching
	The Test Questions
	Results

	Further Evidence
	Conclusion

	Syntax Errors of Students in Python Programming
	Typical Student Errors
	Misconceptions about Syntax and Semantics
	Minor Syntactical Errors
	Beyond Syntax Errors

	Related Work
	Errors in Java
	Conclusion

	Parsing Python-Programs of Novice Programmers
	Introduction
	Organization

	Premise
	Isolated Occurrence of Errors
	Standard Python

	The Parsing Process
	Overview
	Structure of Python Programs
	Drawbacks of this Process: Changing the Grammar

	The Lexer
	Symbol Table and Brackets
	String Literals
	Operators

	Brackets and Parentheses
	Goals
	Combinations of Brackets and Other Tokens
	Detecting Errors

	The Parser
	Recognizing Structural Errors
	Misspelled Keywords

	Static Analysis
	Type System
	Discussion

	Experimental Results from Parsing Python Programs
	Introduction
	Theses
	Organization

	Methodology
	Collected Data
	First Tier
	Second Tier
	Student's Misunderstandings
	Extra Whitespace

	Do Error Messages Help the Student?
	Do Error Messages Help in Learning – A Survey
	Related Work
	Discussion
	Conclusion

	Discussion
	Assessing the Results
	Thesis

	Conclusions and Future Research
	Studying the Errors of Students
	Future Research

	Syntax Errors
	Python's Official Grammar
	Curriculum Vitae

