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1 Introduction

Variations A geodesic is known to be locally the shortest path between two
points p and q on a Riemannian manifold. If we introduce the length functional
L[γ] that assigns to each curve γ its length according to the Riemannian met-
ric, then a geodesic γ0 becomes the curve which locally minimizes the length
functional L[γ]. That is if we slightly alter γ0, L[γ] does not decrease.

In finite-dimensional calculus a necessary condition for x0 to be a minimum of
a function f(x) is that the derivative vanishes d

dxf(x0) = 0. Since the variable
of L[γ] is a function itself, γ is infinite-dimensional and it is therefore not clear
what d

dγL[γ] should mean. To overcome this obstacle we introduce a vector field
X along γ0 and set γs(x) := γ0(x) +s ·X(x). Using such vector fields X as basis
we say: The functional L[γ] has an extremum at γ = γ0 if for every vector field
X:

d

ds

∣∣∣∣
s=0

L[γs] = 0.

This is called the first variation of L and sometimes denoted as δL or δ1L. A
curve γ0 with d

ds

∣∣
s=0

L[γs] = 0 is also called a stationary point for L[γ]. Accord-
ingly one can also define the second variation by

δ2L =
d2

ds2

∣∣∣∣
s=0

L[γs].

The area and mean curvature flow Analogous to the length functional L[γ]

we can define an area functional A[S] for a surface S. Stationary points for
A[S] are then called minimal surfaces. So a minimal surface is indeed a surface
that locally minimizes the area. It turns out that the condition δA[S] = 0 is
equivalent to the mean curvate vector ~H being zero for every point x on S.

In physics the idea of geodesics and minimal surfaces has various applications.
For example Newton’s axiom stating that any object moves along geodesics un-
less forced otherwise (ẍ = 0). Soap films also tend to form minimal surfaces
(with certain constraints as for example the included volume that keeps a soap
bubble from collapsing). If we start off with any soap film it will change shape
until it has reached a stationary point for the area functional under the given
constraints.

The tendency of curves and surfaces to change shape to minimize the length or
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area functional can be modelled by mean curvature flow (MCF):

∂

∂t
x = ~H(x).

It says that each point of the surface moves according to the mean curvature at

Figure 1: Two examples of curves with mean curvature vectors. Under mean cur-
vature flow the curves with fixed endpoints move towards a geodesic.

this point. Because of the first variation formula

δA[N ] = −
∫
N

〈X, ~H〉dH2,

it is obvious that mean curvature flow (for which we have X = ~H) decreases
the area of any surface except of course for minimal surfaces.

If a surface is compact and no other constraints are given, mean curvature flow
will cause it to collapse and disappear within finite time. This is not surprising:
a singular surface consisting of a point alone has always less area than any other
surface which has positive area.

Figure 2: Compact surfaces that evolve under mean curvature flow disappear in
finite time.

During the process of minimizing the area functional a surface can build sin-
gularities and change its topology. It is this singularity building process we are
interested in.
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Figure 3: A soap film changing its topology from a simply connected cylinder to
that of two disjoint discs.

Singularities When a compact convex surface shrinks to a point it becomes
more and more spherical and by the time it vanishes it would have become a
sphere (see figure 2). To observe this more easily we could impose a volume
constraint on the interior of the surface. Then the surface will not shrink at all
but change shape into a sphere, which is known to be the minimizer for the area
under a given volume.

The convergence of convex compact surfaces to a spherical point leads to an-
other question regarding singularities: assume a surface N does develop an-
other singularity p before the surface has shrunk down to a point (if it does
shrink at all). Then does the surface at p also converge to a regular or special
shape like the sphere in the case of convex surfaces?

Under certain circumstances the answer is definitely “yes”. The limiting surfaces
found at such singularities are self-similar shrinking surfaces. Self-similar means
that they do change size but not shape under mean curvature flow. It is the aim
of this paper to investigate such self-shrinking surfaces.

Acknowledgements

The author is deeply indebted to Tom Ilmanen. He has provided exceptional
mentoring and spent many hours explaining details not yet understood by the
author.



2 Preliminaries

In this section we will establish the notation used throughout this paper. We
will also prove some lemmata used later. The reader might skip this section and
come back as needed.

Note that we will restrict ourselves completely to the case of surfaces inside R3.
This simplifies notation and some calculations.

Some of the used symbols are:

〈·, ·〉 Euclidean scalar product.
τ1, τ2 Orthonormal basis of TxN .
ν Unit normal to TxN .
X>, X⊥ Tangential and normal projection of X to TxN .
H, ~H Mean curvature and mean curvature vector.
divN X Divergence of X with respect to N .
II Second fundamental form.
Hn n-dimensional Hausdorff measure.

2.1 Notation

Vectors and derivatives Elements of R3 and vectors will be written without
a special marker. Only the mean curvature vector ~H will be distinguished from
its scalar counterpart H. The euclidean scalar product will be written as 〈·, ·〉,
whereas the dot · is never used for a scalar product.

For a surface N ⊂ R3 let τ1(x), τ2(x) be an orthonormal basis for the tangent
space TxN and ν(x) the unit normal vector. For simplification we will suppress
the dependance on x and just write τ1, τ2 and ν, respectively.

Let X : R3 → R3 be a vector field. Then we can write the derivative of X in the
direction of τ as:

DτX = DX · τ,

where (DX)ji = (∂iX
j) is the jacobian matrix of X. The divergence of X with

respect to N is

divN X := 〈Dτ1X, τ1〉+ 〈Dτ2X, τ2〉.
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Analogous we have for a function f : R3 → R the derivative in direction of τ :

Dτf(x) = 〈Df, τ〉,

where (Df)i = ∂if is the gradient of f . Similar to the divergence it is

DNf := Dτ1f · τ1 +Dτ2f · τ2.

We will also denote the intrinsic derivative of a function u : N → R by DNu.

For any vector field X, the tangential part of X is denoted by X> and X⊥ is the
part perpendicular to N , i. e.:

X> = 〈X, τ1〉τ1 + 〈X, τ2〉τ2, X⊥ = 〈X, ν〉ν.

Metric and curvature As usual the metric is denoted by gij and its inverse
by gij . The second fundamental form will be denoted by II. Note that for an
embedding F : M → R3 of M into R3 the metric is

gij = 〈∂iF, ∂jF 〉.

The second fundamental form then is

IIij = 〈∂iν, ∂jF 〉 = −〈ν, ∂i∂jF 〉.

The equivalence of these two expressions for II follows from the fact that 〈ν, ∂iF 〉 =

0 for all i.

Mean curvature plays a crucial role in our paper. It is denoted by H, whereas ~H
will denote the mean curvature vector. We have

H := − divN ν = −gij IIij , ~H = Hν.

Note that there is no canonical form for H. Some treatments define mean cur-
vature with an opposite sign such that ~H = −Hν. Others use H = 1

n divN ν.
This causes sometimes slight differences between our result and that of other
papers.

Integration Most of the integrals will be with respect to the euclidean area.
For the later we use the Hausdorff measure Hn. However the results do not
depend on special properties of the Hausdorff measure so the reader might just
read it as euclidean length (H1) or area (H2) respectively.

The exact definition of Hn can be found in any book about Geometric measure
theory.
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2.2 Some lemmata

This section contains some lemmata that are rather techincal. As mentioned
before the reader might skip this section and come back as needed.

Lemma 1 For a function f : R3 → R and a vector field X : R3 → R3 we have:

divN (f ·X) = f · divN X + 〈X, (Df)>〉.

In the special case of X = ν we get

divN (f · ν) = f · divN ν.

Proof

divN (f ·X) = Dτ1(f ·X) · τ1 +Dτ2(f ·X) · τ2
= f · 〈Dτ1X, τ1〉+Dτ1f〈X, τ1〉+ f · 〈Dτ2X, τ2〉+Dτ2f〈X, τ2〉

= f · divN X + 〈X,Dτ1f · τ1 +Dτ2f · τ2〉

= f · divN X + 〈X, (Df)>〉

For X = ν the second term obviously vanishes: 〈ν, (Df)>〉 = 0. �

Lemma 2 Let X : N → R3 be a vector field on a submanifold N ⊂ R3 with
compact support (i. e. X ≡ 0 on ∂N if ∂N 6= ∅). Then∫

N

divN X = −
∫
N

〈 ~H,X〉,

where ~H is the mean curvature vector of N .

Proof Split the vector field X into the tangential and the normal component
X = X> + X⊥. Then X⊥ = 〈X, ν〉ν and with Lemma 1 for f = 〈X, ν〉 we
obtain:

divN X
⊥ = divN (〈X, ν〉ν)

= 〈ν,X〉 · divN ν

= 〈divN ν · ν,X〉

= −〈 ~H,X〉.
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The tangential component X> can locally be regarded as a vector field X̃ :

R2 → R2. Therefore we can apply the divergence theorem in two dimensions:∫
N

divN X
> =

∫
∂N

〈X>, ~n〉,

where ~n is the unit normal along ∂M inside TxN . But because X has compact
support the right hand side is zero and therefore:∫

N

divN X =

∫
N

divN X
> + divN X

⊥ = 0−
∫
N

〈 ~H,X〉.

�

Lemma 3 Let A,B ∈ R2×2 be two matrices. Then

det(I +At+Bt2) = 1 + t · trA+ t2(detA+ trB) +O(t3),

where I is the unity matrix Iij = δij .

Proof

det(I +At+Bt2) =
(
1 + a11t+ b11t

2
) (

1 + a22t+ b22t
2
)

−
(
a12t+ b12t

2
) (
a21t+ b21t

2
)

= 1 + t(a11 + a22) + t2(b11 + b22 + a11a22 − a12a21)

= 1 + trA+ t2(detA+ trB).

�

Lemma 4 For the second fundamental form II of a surface N inside R3 it is:

2 det(II) = H2 − | II |2,

where | II |2 = IIij IIji .

Proof Set

II =

[
a11 a12

a21 a22

]
.

Then

| II |2 = a11a11 + a12a21 + a21a12 + a22a22

= (a11 + a22)2 − 2a11a22 + 2a12a21

= (tr(II))2 − 2 det(II).

�



3 Selfsimilar solutions to mean curvature flow

3.1 Mean curvature flow

A surface can be considered as a 2-manifold M with a smooth embedding F :

M → R3. To have the surface evolve with time we extend F to depend on a
time variable t and get:

F : M × I → R3

(p, t) 7→ x

This leads to a family of surfaces {Nt}t ⊂ R3. For convenience of notation we
will mostly drop the embedding F and directly consider the surfaces Nt.

A family of smoothly embedded surfaces {Nt}t moves by mean curvature flow if
for all x ∈ Nt:

∂x

∂t
= ~H(x). (MCF)

It says that the velocity of any point x ∈ Nt is given by its mean curvature.

The actual parametrization of the surfaces Nt is of no interest to us. So we ig-
nore any tangential motions withinNt and assume that theNt’s are parametrized
such that the velocity ∂x

∂t is indeed perpendicular to TxNt.

Minimal surfaces Because minimal surfaces have zero mean curvature every-
where they do not evolve under mean curvature flow at all. There is a wide
variety of known minimal surfaces today. Two of the best-known are the plane
and the catenoid. Another example that will be of interest to us is the Scherk
surface or Scherk tower (There are other minimal surfaces also called Scherk sur-
face but we will always refer to this one). The special thing about this surface is
that it provides a possiblity to desingularize the intersection of two surfaces.

If for instance two planes intersect the result is not a submanifold of R3 anymore
– it is singular along the intersection line. To prevent this singularity one could
bend the two planes so that they do not intersect anymore, in a way similar to
hyperbolas. There are two possible ways of doing so and by combining them
one gets the Scherk tower.
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Figure 4: A piece of the Scherk tower.

An implicit formula for the Scherk tower is

sinh(x) · sinh(z) = sin(y),

where x, y and z denote the usual coordinates of R3. It is an easy exercise to
verify that mean curvature for this surface is zero everywhere.

Selfsimilar surfaces Another import class of solution to the mean curvature
flow are self-similar surfaces. In contrast to minimal surfaces which are sta-
tionary self-similar surfaces are allowed to move (translate), shrink or expand.
However besides shrinking or expanding they do not change shape.

An example of a self-shrinker is the sphere. The sphere is a most regular figure
but under mean curvature flow it is not stationary. It shrinks down to a single
point. But even though the sphere shrinks it stays a sphere for all the time it
is defined (before it becomes a singularity) und thus it is a fine example of a
self-shrinker. We will discuss self-similar surfaces in greater detail below.

3.2 Singularities

Apart from minimal and self-similar surfaces any smoothly embedded surface
in R3 can be evolved under mean curvature flow. However a common surface
is likely to develop singularities in finite time and thereby cease to be a regular
embedded surface.
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Convex surfaces If a surface is compact and convex it will not build any singu-
larities before it shrinks down to a point. By convex we mean that the prinicipal
curvatures, that is the eigenvalues of the second fundamental form, all have
the same sign for every point. The actual sign depends on the choice of a unit
normal field. This result is due to Huisken.

Huisken showed even more. Such a convex compact surface will become more
and more spherical as it shrinks down to a point. Because it does not make
much sense to speak about a spherical singularity we have to normalize the
surfaces Nt in order to state an exact result.

So let Φt : R3 → R3 be a homothety (i. e. there is a λt ∈ R>0 such that for every
point x ∈ R3 it is Φt(x) = λt ·x). Then normalize the surfaces Nt such that their
area remains constant: Ñt = Φt ·Nt with∫

Ñt

dH2 =

∫
N0

dH2,

where N0 shall denote the initial surface. Let furthermore T be the time where
Nt becomes singular for the first time. Then for any convex compact initial
surface N0 the normalized surfaces Ñt will converge to a sphere with the same
area as N0 as t→ T .

After introducing a new time variable t̃ such that the surfaces Ñt̃ are defined for
all 0 ≤ t̃ <∞, Huisken’s exact result is as follows:

Theorem 5 (Huisken, 1984) Let n ≥ 2 and assume that M0 is uniformly
convex, i. e., the eigenvalues of its second fundamental form are stricly positive
everywhere. Then the evolution equation (MCF) has a smooth solution on a finite
time interval 0 ≤ t < T , and the Mt’s converge to a single point O as t → T .
The normalized equation has a solution M̃t̃ for all time 0 ≤ t̃ < ∞. The surfaces
M̃t̃ are homothetic expansions of the Mt’s, and if we choose O as the origin of
Rn+1, then the surfaces M̃t̃ converge to a sphere of area |M0| in the C∞-topology
as t̃→∞.

Limiting surfaces for singularities According to Huisken’s result any convex
compact surface shrinks down to a point and converges thereby to a sphere.
When the surface is not convex we cannot expect it to become spherical in the
limit as t→ T anymore, even if it shrinks down to a point. It is likely to develop
another singularity before T and change its topology.
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Since convex surfaces are converging to the sphere we might ask if other “singu-
laritiy points” still converge to special surfaces. A few years after his first result
Huisken has also given the answer to this question.

Let p be a singularity point of Nt at the time t = T . Assume furthermore that
the second fundamental form does not grow too fast (will be made more precise
below). Then a neighborhood of p will converge to a self-shrinking surface as
t→ T .

In other words self-shrinking surfaces are a means to describe the singularities
that evolve under mean curvature flow. Understanding these self-shrinkers will
lead to a better understanding of the singularities and give a means to evolve a
surface past the time of its first singularity.

Let us state Huisken’s result more precisely. Assume that there is an upper
bound for the blow-up rate of the second fundamental form of the form

max
Nt
| II |2 ≤ C0

2(T − t)
(1)

for a constant C0 and T being the time where the first singularity occurs. As
before normalize the surfaces Nt and time t:

Ñt̃ =
1√

2(T − t)
Nt, t̃ = log

1√
2(T − t)

.

Then we get the following theorem:

Theorem 6 (Huisken, 1990) Suppose (1) is satisfied. Then for each sequence
t̃j → ∞ there is a subsequence t̃jk such that Ñt̃jk converges smoothly to an im-
mersed nonempty limiting surface M̃∞.

Each such limiting surface M̃∞ satisfies the equation

H = −〈x, ν〉
2

,

where x ist the position vector, H is the mean curvature and ν is the unit normal
such that the mean curvature vector is given by ~H = Hν.

3.3 Self-Shrinkers

A self-similar shrinker is a surface that shrinks under (MCF) homothetically.
because of theorem 6 such self-shrinkers play a role as limiting surfaces for
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singularities. In this section we deduce a special equation that holds for any
self-shrinker.

For convenience assume that the time at which the surface Nt becomes singular
is T = 0. Then the surface does exist for t < 0 only. We furthermore impose the
ansatz

Nt = λ(t) ·N1,

where λ : R≤0 → R≥0 ist the homothety factor and N1 is the surface at time
t = −1. Clearly we have λ(−1) = 1 and λ(0) = 0 with this setting.

Accoding to (MCF) H(x) gives the velocity of any point x ∈ Nt. The smaller the
surface the larger H(x), in fact we have

H(λx) =
1

λ
H(x). (2)

Thus we expect the shrinking process to accelerate as t → 0. In other words
λ(t) is supposed to have a graph similar to the one in figure 5.

t

Figure 5: The shrinking process of a surface N is supposed to accelerate as t→ 0.

To see (2) let x = F (u, v) be the embedding of M into R3. Then the homothet-
ically expanded surface has the embedding F̃ = λ ·F . Of course the metric and
second fundamental form change accordingly:

g̃ij = 〈∂iF̃ , ∂jF̃ 〉 = λ2gij , ĨIij = −ν∂i∂jF̃ = −λν∂i∂jF = λ IIij .

For H we then get

H̃ = g̃ij IIij =
1

λ2
gij · λ IIij =

1

λ
H.

Now put the ansatz Nt = λ(t) ·N1 into (MCF):

∂

∂t
(λ(t) · x) =

~H

λ(t)
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which leads to
dλ

dt
· λ · x = ~H. (3)

Because ~H and x do not depend on t we get the ODE:

dλ

dt
· λ = C

and thus
λ(t) =

√
C · t.

Through the conditions λ(0) = 0 and λ(−1) = 1 we finally get

λ(t) =
√
−t.

If we put this back into (3) and with λ′ · λ = − 1
2 we obtain the self-shrinker

equation:

−1

2
x = ~H

or

H +
〈x, ν〉

2
= 0. (SS)

Any self-shrinking surface Nt is a solution for (SS) for t = −1. The equation
(SS) does not only impose constraints on the shape but also on the specific size
of a surface. For example we will see that the sphere is only a solution to (SS) if
it has radius R = 2. This does not mean that a larger or smaller sphere will not
shrink homothetically but any sphere that is supposed to shrink to a singularity
at t = 0 must have radius R = 2 at time t = −1.

There are only a few known solutions to (SS). These include the sphere, the
cylinder, the plane and a doughnut found by Angenent. However there are
numerical indications of further solutions.

In general minimal surfaces are not a solution to (SS). Because of H = 0 for all
x ∈ N we have 〈x, ν〉 = 0 which is only true for cones and of which only the
plane is a smoothly embedded minimal surface.

Sphere and cylinder The mean curvature of the sphere S2 is well known to
be H = −2

R , where R is the radius. It is also obvious that x = Rν for all x ∈ S2

and therefore (SS) becomes:

− 2

R
+
R

2
= 0.
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So the sphere is clearly a solution to (SS) with the radius at t = −1 being R = 2.

Analogous the mean curvature of a cylinder C with radius R is H = −1
R . On the

other hand 〈x, ν〉 = R for all x ∈ C. So (SS) becomes:

− 1

R
+
R

2
= 0,

which yields R =
√

2.

Angenent’s doughnut To prove that the torus found by Angenent is a self-
shrinker is beyond the scope of this paper. However we state the main result
and give a sketch of the proof.

Theorem 7 (Angenent, 1989) For n ≥ 2 there exist embeddings Fn : S1 ×
Sn−1 → Rn+1 for which Fn(p, t) =

√
−t·Fn(p) is a solution of the mean curvature

flow (MCF).

The proof makes strong use of the rotation symmetry of the torus. In fact An-
genents method could be used to find any self-shrinker obtained by rotating a
curve γ ⊂ R2.

Angenent shows that the surface N obtained through rotation of the curve γ is a
self-shrinker iff the curve γ is a geodesic for a special metric bestowed upon R2.
The problem of finding a self-similar torus is thus reduced to finding a geodesic
on a two-manifold. The existence of a symmetric closed curve γ is then proven
with the theory of differential equations.

We will come back to Angenent’s doughnut later on.



4 First and second variation

The problem with the self-shrinker equation (SS) is that it must hold for every
point x ∈ N . For a surface N that is not as highly symmetric as are the sphere
or the cylinder it can become quite difficult and cumbersome to check (SS) for
all x ∈ N . Thus it would be handy to have a global equation or characterization
for self-shrinkers N , equivalent to (SS). Such a characterization is provided by
a functional J [N ] which we will derive in this section.

Minimal surfaces are stationary for the area functional A[N ], i. e. δA[N ] = 0

for any minimal surface N . On the other hand N also satisfies H = 0 for every
point x ∈ N . So the local equation H = 0 corresponds to the global equation
δA[N ] = 0.

Although self-shrinkers are not stationary for A[N ] it is possible to find another
functional J [N ] for which self-shrinkers are stationary. Hence δJ [N ] = 0 will be
equivalent to (SS). In order to find J [N ] we impose the ansatz

J [N ] =

∫
N

f(x)dH2

for a function f : R3 → R, and try to determine f(x). In this we will mainly
follow Ilmanen’s approach.

However the idea of the functional J [N ] is due to Huisken. He discovered that
for the backward heat kernel

ρ(x, t) =
1

(−4πt)n/2
· exp

(
|x|2

4t

)
, t < 0

equation (MCF) implies the following monotonicity formula.

Theorem 8 (Huisken, 1990) If a surface Nt satisfies (MCF) for t < 0 then we
have the monotonicity formula

d

dt

∫
Nt

ρ(x, t)dµt = −
∫
Nt

ρ(x, t)

∣∣∣∣ ~H − 1

2t
~F⊥
∣∣∣∣ dµt.

4.1 The Jacobian

To calculate the first and second variation we will use the jacobian of some
diffeomorphisms ψt. The aim of this section is to prove the following formula



20 Self-Similar Shrinkers in R3

for the jacobian:

Jψt = 1 + tdivN X +
t2

2

(
divN Z +

∣∣(Dτ1X)⊥
∣∣2 +

∣∣(Dτ2X)⊥
∣∣2 + 2Λ

)
.

These calculations are inspired by the first and second variation formulae that
can be found in Simon’s treatise [13].

Let U be an open subset of R3 and let {φt}t be a family of diffeomorphisms
U → U such that φ0(x) = x. Let X and Z denote the initial velocity and
acceleration vectors for φt:

X =
∂φt(x)

∂t

∣∣∣∣
t=0

, Z =
∂2φt(x)

∂t2

∣∣∣∣
t=0

.

Then

φt(x) = x+ tX +
t2

2
Z +O(t3).

Let ψ be the restriction of φ to N :

ψt := φt

∣∣∣
N
.

We want to calculate the jacobian Jψt by the formula

(Jψt|x)
2

= det ((dψt|x)∗ ◦ (dψt|x)) .

We will only be interested in the first and second derivative of Jψt at t = 0 so
we drop the O(t3) terms to simplify notation. From ψt = x+ tX + t2

2 Z we get

dψt|x (τ) = Dτψt = τ + tDτX +
t2

2
DτZ.

Then (dψt|x)∗ ◦ (dψt|x) has matrix

δij + t
(
〈τi, DτjX〉+ 〈τj , DτiX〉

)
+t2

(
1

2
(〈τi, DτjZ〉+ 〈τj , DτiZ〉) + 〈DτiX,DτjX〉

)
Using the formula from Lemma 3 we calculate the determinant:

(Jψt)
2 = 1 + 2t · (〈τ1, Dτ1X〉+ 〈τ2, Dτ2X〉)

+ t2
(

4〈τ1, Dτ1X〉〈τ2, Dτ2X〉 − (〈τ1, Dτ2X〉+ 〈τ2, Dτ1X〉)2

+ (〈τ1, Dτ1Z〉+ 〈τ2, Dτ2X〉) + |Dτ1X|2 + |Dτ2X|2
)

= 1 + 2t · divN X + t2
(

(divN X)2 + divN Z

+
∣∣(Dτ1X)⊥

∣∣2 +
∣∣(Dτ2X)⊥

∣∣2 + 2Λ
)
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Where

(DτiX)⊥ = 〈ν,DτiX〉 = DτiX − 〈τ1, DτiX〉τ1 − 〈τ2, DτiX〉τ2

and
Λ = 〈τ1, Dτ1X〉〈τ2, Dτ2X〉 − 〈τ1, Dτ2X〉〈τ2, Dτ1X〉.

The symbol Λ is introduced here for brevity of notation. For X = ν this becomes
det II.

In the last step we used

(divN X)2 = (〈τ1, Dτ1X〉+ 〈τ2, Dτ2X〉)2

= |〈τ1, Dτ1X〉|2 + 2〈τ1, Dτ1X〉〈τ2, Dτ2X〉+ |〈τ2, Dτ2X〉|2

and (recall that 〈τ1, τ2〉 = 0)∣∣(DτiX)⊥
∣∣2 = (DτiX − 〈τ1, DτiX〉τ1 − 〈τ2, DτiX〉τ2)

2

= |DτiX|2 + |〈τ1, DτiX〉|2 + |〈τ2, DτiX〉|2

− 2〈τ1, DτiX〉〈τ1, DτiX〉 − 2〈τ2, DτiX〉〈τ2, DτiX〉

= |DτiX|2 − |〈τ1, DτiX〉|2 − |〈τ2, DτiX〉|2.

So that together we obtain for (divN X)2 +
∣∣(Dτ1X)⊥

∣∣2 +
∣∣(Dτ2X)⊥

∣∣2 :

2〈τ1, Dτ1X〉〈τ2, Dτ2X〉+ |Dτ1X|2 + |Dτ2X|2 − |〈τ2, Dτ1X〉|2 − |〈τ1, Dτ2X〉|2

The difference to the term in the formula for (Jψt)
2 above is

2 (〈τ1, Dτ1X〉〈τ2, Dτ2X〉 − 〈τ1, Dτ2X〉〈τ2, Dτ1X〉) = 2Λ.

Finally we use(
1 +At+Bt2

)2
= 1 + 2At+ (A2 + 2B)t2 +O(t3)

to get the expression for Jψt:

Jψt = 1 + tdivN X +
t2

2

(
divN Z +

∣∣(Dτ1X)⊥
∣∣2 +

∣∣(Dτ2X)⊥
∣∣2 + 2Λ

)
.

4.2 First Variation

Now that we have an expression for the jacobian we can calculate the first
variation of J [N ]. The following can be found in Ilmanen [10].
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d

dt

∣∣∣∣
t=0

∫
Nt

f(x) =
d

dt

∣∣∣∣
t=0

∫
N

f(ψt(x)) · |Jψt(x)|

=

∫
N

d

dt

∣∣∣∣
t=0

(f(ψt(x)) · |Jψt|)

=

∫
N

d

dt
f(ψt)

∣∣∣∣
0

· 1 + f(x) · d
dt
Jψt

∣∣∣∣
0

=

∫
N

〈Df,X〉+ f divN X

=

∫
N

〈Df,X〉+ divN (fX)− 〈(Df)>, X〉

=

∫
N

〈(Df)⊥, X〉 − 〈fX, ~H〉

=

∫
N

〈(Df)⊥ − f · ~H,X〉.

If a surface N satisfies the equation

(Df)⊥ − f · ~H = 0, (4)

then the above integral is zero for every vector field X. Division by f and
multiplication by ν yields

H − 〈Df, ν〉
f

= 0.

For
−Df

f
=
x

2

equation 4 becomes equivalent to (SS). So we solve for f(x) and get

f(x) = C · e−|x|
2/4

with a constant C which can be choosen as C = (4π)−1.

Note that in difference to the backward heat kernel of Huisken our f(x) does
not depend on time t. This is because the self-shrinker equation (SS) is specific
for a certain time and setting t = −1 in Huisken’s heat kernel leads to the same
result.

Finally we get the functional

J [N ] =
1

4π

∫
N

e−|x|
2/4dH2

and
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Theorem 9 If a surfaceN satisfies the self-shrinker equation (SS) it is stationary
for the functional J , i. e. δJ [N ] = 0.

4.3 Second Variation

In calculus the second derivative reveals information about the stability of an
extremum. Let x0 be an extremum of the real valued function f(x). Then f(x0)

is a maximum if f ′′(x0) < 0 and a minimum if f ′′(x0) > 0. For any algorithm
that tries to minimize f(x) a maximum is a highly unstable extremum whereas
the minimum is stable. Being slightly off a maximum, the algorithm will diverge
from it, whilst it always converges towards a minimum. For f ′′(x0) = 0 we have
a saddle point and then the stability depends on whether we are on the left or
the right side of the extremum.

Roughly the same holds for a functional. The second variation reveals informa-
tion about the stability of a stationary point. Unfortunately there is an infinity
of possible stability directions so we do not expect to find a completely stable
point at all – except for the singular point which has minimal area with re-
spect to any metric. That’s why we want to concentrate on a few well choosen
stability directions.

Of course we first need to have an expression for the second variation. After
finding an expression for general vector fields we will specialize on the case of
normal vector fields X = uν for some u : N → R. As mentioned earlier we
are not interested in tangential motions anyway so that this special case is still
general enough to handle all questions we impose in this paper.

Note that we are only interested in the stability of stationary points. In other
words we do calculate the second variation for a surface for which the first
variation is zero. This will permit some simplification.
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d2

dt2

∣∣∣∣
t=0

∫
Nt

f =
d2

dt2

∣∣∣∣
t=0

∫
N

f(ψt(x)) · |Jψt(x)|

=

∫
N

d2

dt2

∣∣∣∣
t=0

(f(ψt(x)) · |Jψt|)

=

∫
N

d2

dt2
f(ψt) · Jψt + 2

d

dt
f(ψt) ·

d

dt
Jψt + f(ψt) ·

d2

dt2
Jψt

∣∣∣∣
0

=

∫
N

D2f(X,X) + 〈Df,Z〉+ 2 divN X〈Df,X〉+ f divN Z

+ f ·
(∣∣(Dτ1X)⊥

∣∣2 +
∣∣(Dτ2X)⊥

∣∣2 + 2Λ
)

=

∫
N

D2f(X,X) + 2 divN X〈Df,X〉

+ f ·
(∣∣(Dτ1X)⊥

∣∣2 +
∣∣(Dτ2X)⊥

∣∣2)
+ 2f · (〈τ1, Dτ1X〉〈τ2, Dτ2X〉 − 〈τ1, Dτ2X〉〈τ2, Dτ1X〉)

In the last step we used the fact that 〈Df,Z〉+ f divN Z is zero because we are
calculating the second variation at a point where the first variation is zero for
any vector field X. Furthermore we do know Df from the calculations of the
first variation and can also derive an expression for D2f :

Df = −x
2
f(x)

D2f(X,X) =
1

4
f(x) · |〈x,X〉|2 − 1

2
f(x) · |X|2.

This leads to:

d2

dt2

∣∣∣∣
t=0

∫
Nt

f =

∫
N

f(x)

(
1

4
|〈x,X〉|2 − 1

2
|X|2 − divN X〈x,X〉

+
∣∣(Dτ1X)⊥

∣∣2 +
∣∣(Dτ2X)⊥

∣∣2 + 2Λ

)

Now set X = uν for a function u : N → R. Because we do ignore tangential
motions this is no additional constraint on possible motions of N . Also recall
that because the first variation is zero, N is a self-shrinker and thus

〈x, ν〉
2

+H = 0.

Furthermore Λ = u2 det(II) for X = uν and therefore we can simplify the
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second variation formula:

d2

dt2

∣∣∣∣
t=0

∫
Nt

f =

∫
N

f(x)
(1

4
|〈x, uν〉|2 − 1

2
|uν|2 − divN (uν)〈x, uν〉

+
∣∣(Dτ1(uν))⊥

∣∣2 +
∣∣(Dτ2(uν))⊥

∣∣2 + 2u2 det(II)
)

=

∫
N

f(x)

(
u2
(
〈x, ν〉

2

)2

− 1

2
u2 − 2u2 divN ν ·

〈x, ν〉
2

+ |DNu|2 + 2u2 det(Dν>)

)

=

∫
N

f(x)

(
u2H2 − 1

2
u2 − 2u2H2 + 2u2 det II +|DNu|2

)
=

∫
N

f(x)

(
−u2H2 − 1

2
u2 + 2u2 det II +|DNu|2

)
=

∫
N

f(x)

(
u2
(

2 det(II)−H2 − 1

2

)
+ |DNu|2

)
=

∫
N

f(x)

(
−u2

(
| II |2 +

1

2

)
+ |DNu|2

)

In the last step we used lemma 4 to replace det(II).

By lemma 1 we have

divN (u ·DNu) = u · divN (DNu) + |DNu|2

= u ·∆Nu+ |DNu|2.

Again by lemma 1 it is

f · divN (u ·DNu) = divN (f · u ·DNu)− 〈(Df)>, uDNu〉.

Putting this together yields:∫
N

f · |DNu|2 =

∫
N

f · divN (u ·DNu)− f · u ·∆Nu

=

∫
N

divN (f · u ·DNu)− u〈(Df)>, DNu〉 − f · u ·∆Nu

=

∫
N

−u〈Df,DNu〉 − f · u ·∆Nu

=

∫
N

−1

2
u · f〈−x,DNu〉 − f · u ·∆Nu.
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And finally we get for the second variation:

d2

dt2

∣∣∣∣
t=0

∫
Nt

f =

∫
N

f(x)

(
−u2

(
| II |2 +

1

2

)
− u ·∆Nu+

1

2
u〈x,DNu〉

)
=

∫
N

−f(x) · u ·
(
| II |2u+

1

2
u− 1

2
〈x,DNu〉+ ∆Nu

)
=

∫
N

−f(x) · u · L(u)

where
L(u) = ∆Nu−

1

2
〈x,DNu〉+ | II |2u+

1

2
u.

4.4 The linear operator L(u)

As mentioned above there are an infinite number of possible functions u : N →
R and associated stability directions. In addition the functions u depend on
the surface N and therefore it is very difficult to get general results concerning
stability. However if u is an eigenfunction of L(u) with eigenvalue λ it is easy
to derive general results.

Assume that λ is the eigenvalue for L(u) associated with uλ. Then we get:

d2

dt2

∣∣∣∣
t=0

∫
Nt

f = −λ
∫
N

f(x)u2λ.

The integral on the right side is always positive because f(x) and u2λ are pos-
itive everywhere. Therefore the stability depends solely on the eigenvalue λ.
For positive λ the right side becomes negative. So the stationary point is a max-
imum. For negative λ the stationary point is a minimum and therefore stable
under u. Thus we call a surface N stable if L(u) has no positive eigenvalues.

We expect some important vector fields X to induce eigenfunctions u. In partic-
ular the rotation X = Lx will induce an eigenfunction with eigenvalue λ = 0.
This is because the functional J [N ] is rotationally symmetric and rotating any
surface with fixed origin does not change the functional J [N ].

On the other hand there are indications that the eigenvalues induced by a ho-
mothety X = µx or a translation X = a for a fixed a ∈ R3 are positive. We will
present the numerical indications in the next chapter.

A surface N that is stable except perhaps for a homothety or a translation does
not change shape. Accordingly we call the surface N geometrically stable if the
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only possible positive eigenvalues of L(u) are the ones coming from a homoth-
ety or a translation.

Unfortunately it was not possible to develop this theory further in time and so
it has to remain for future investigation.



5 Numerics

Most of the self-shrinkers known today are only known in form of numerical
approximations. Actually the existence of these self-shrinkers is not proved but
only indicated by various computations. We will present here a further algo-
rithm to find self-shrinkers numerically. Beside that we will also introduce some
of the previously found self-shrinkers.

5.1 Gaussian space

The starting point for our algorithm lies in the observation that self-shrinkers
are stationary for the functional

J [N ] =
1

4π

∫
N

e−|x|
2/4dH2. (5)

Thus the search for self-shrinkers is equivalent to the search for stationary sur-
faces for J [N ].

We can interpret the functional J [N ] as the area functional of a space endowed
with the “Gaussian” metric

f(x) =
1

4π
e−|x|

2/4. (6)

Invoking the mean curvature flow of this modified space will minimize the func-
tional J [N ] for the very same surface in euclidean space. Hopefully this will
converge to a stationary point.

According to the well known first variation formula

δA[N ] = −
∫
N

〈X, ~H〉dH2

a surface decreases its area under mean curvature flow (X = ~H) unless it is
stationary for the area functional. Therefore a surface converges to a stationary
point or evolves into a singularity with zero area. This convergence lies at the
heart of our algorithm.

We will denote the space R3 endowed with the metric f(x) from (6) by G3

and call it Gaussian space. Note that the area functional A[N ] in Gaussian space
corresponds to the functional J [N ] in euclidean space. For clarity we will mostly
refer to the area of a surface inside G3 as J .



Numerics 29

5.2 Stability

Unfortunately the metric f(x) in (6) introduces new instabilites. For instance
euclidean space R3 is invariant under translation whereas G3 is not, as the
following example shows.

Example: Translation of a plane Let P be a plane parallel to the xy-plane.
Then z is the distance of P from the origin. We calculate the functional J [N ]

(which corresponds to the area of P inside G3) in dependance of z:

J [P ] =
1

4π

∫
P

e−|~x|
2/4dH2

=
1

4π
e−z

2/4

∫ ∞
0

∫ ∞
0

e−(x
2+y2)/4dxdy

= e−z
2/4

Note that we exceptionally wrote ~x = (x, y, z). Obviously a plane can diminuish

z

J

z

J

Figure 6: The area of the plane with respect to the distance from the origin (left)
and the area of a sphere with constant radius, moved away from the origin (right).
Both in Gaussian space.

its area by moving away from the origin. As long as the surface moves by mean
curvature the plane will not move because H ≡ 0. But the slightest perturbation
will cause the plane to become unstable and start moving. In particular this
instability plays a role for any surface with H 6≡ 0.

Homothetic instability In contrast to euclidean space the scale of the surface
does also play a crucial role. This is hardly surprising because the stationary
surfaces are the self-shrinkers at time t = −1 and as mentioned before they
need to have a very specific size.

Example: Homothetic expansion of a sphere Clearly the area of the sphere
depends on the radius – even in Gaussian space. But in contrast to euclidean
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space there is a second stationary radius besides r = 0 (which is the singularity
that always exists as stationary point). For the radius r we get the following
Gaussian area for the Sphere:

J [S2] =
1

4π

∫
S2

e−|x|
2/4dH2

=
1

4π
e−r

2/4

∫
S2

dH2

=
1

4π
e−r

2/4 · 4πr2

= r2e−r
2/4.

Figure 7 shows the graph for J [S2] in dependence of the radius r. The men-
tioned stationary point which is a maximum is clearly seen. To find the precise
value we differentiate J [S2] with respect to r:

r

J

Figure 7: The area of a sphere with respect to the radius in Gaussian space.

d

dr
J [S2] =

(
2r − 1

2
r3
)
e−r

2/4 = −r
2

(r2 − 4)e−r
2/4.

Therefore the maximum seen in figure 7 is located at r = 2. It is the only
extremum besides r = 0 and r = ∞. This corresponds exactly to the result we
derived earlier stating that the self-shrinking sphere needs to have a radius of
r = 2 at time t = −1.

The example of the homothetically expanded sphere shows a stability problem
occuring for homotheties. If a sphere is slightly off the stationary radius r = 2

it will never converge to this stationary point. Rather it will shrink to a point
or expand to infinity, where the Gaussian area vanishes due to the fast decay of
the Gaussian metric.

For other surfaces such as the cylinder this stability turns out to be even worse.
A cylinder that is slightly off the stationary radius will not only shrink to a point
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or expand to infinity but also change shape rapidly. We will go into more details
later.

Controlling the instabilities Among the three geometrical instabilities – ro-
tation, translation and homothety – the rotation is of no interest to us. It has no
effect on J and we therefore ignore it.

The instability of translation can easily be controlled by symmetry. This is be-
cause on a symmetric surface translatory forces compensate each other. The
surfaces we investigate are all highly symmetric and so we can neglect this in-
stability here. But note that a slight perturbation could cause the surface to be-
come unstable and start moving. Translatory instabilities also become an issue
when dealing with surfaces that are not symmetric with respect to the origin.

The final instability of homotheties must be controlled manually. This control
is one of the center pieces of our algorithm. Roughly speaking the algorithm
pushes the surface back to a size near the extremum whenever needed. Unfor-
tunately we can barely hope to hit the stationary point precisely enough to keep
the surface from shrinking or expanding. The details will be given below.

5.3 Surfaces of rotation

When a surface N is obtained by rotating a curve γ around the z-axis it is
possible to formulate a condition for the curve γ that is equivalent to N being
a self-shrinker. By doing so we can reduce a three-dimensional problem to a
two-dimensional problem.

Angenent used this idea to prove that there is a self-shrinking torus. He showed
that there is a closed curve γ in the plane that creates a self-shrinking torus by
rotation.

Let γ = (u(t), v(t)) be a curve inside the plane with u(t) ≥ 0 (to avoid confusion
we denote the two axes with u and v instead of x and z). Then we get a surface
by rotating γ around the z axis, obtaining

F (ϕ, t) =

 cos(ϕ)u(t)

sin(ϕ)u(t)

v(t)

 .



32 Self-Similar Shrinkers in R3

Recall that the metric is calculated by gij = 〈∂iF, ∂jF 〉. We have:

∂F

∂ϕ
=

 − sin(ϕ)u(t)

cos(ϕ)u(t)

0

 ,
∂F

∂t
=

 cos(ϕ)u′(t)

sin(ϕ)u′(t)

v′(t)

 .

This gives the metric

g =

[
u2(t) 0

0 (u′(t))2 + (v′(t))2

]
.

We can now compute the functional J [N ]:

J [N ] =

∫
N

f(~x)dH2

=

∫
N

f(~x)
√

det g dϕ dt

=

∫
γ

∫ 2π

0

f(~x)u(t)
√

(u′)2 + (v′)2 dϕ dt

= 2π

∫
γ

f(~x)u(t)dH1.

Using the Gaussian functional f(x) = 1
4π e
−|~x|2/4 and |~x|2 = u2 + v2 we get

J [N ] =
1

2

∫
γ

u e−|u
2+v2|/4dH1.

Therefore we get the following theorem:

Theorem 10 A surface N obtained by rotating the curve γ is a solution to (SS)
iff γ : t 7→ (x, y) is stationary for the functional

K[γ] =

∫
γ

u e−|x
2+y2|/4dH1.

Again we can interpret K[γ] as the length functional of a two-dimensional space
endowed with the metric g(x, y) = x exp(−|x2+y2|/4). For convenience we will
refer to this space as K-space.

Sphere and cylinder Of course the sphere and the cylinder are rotationally
symmetric surfaces. So there are curves γS and γC respectively that create the
sphere or the cylinder when rotated. We will not prove here that these curves
γS and γC are geodesics for the K-space defined above. However we will show
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that the radius for the sphere obtained through this method is the same as the
radius we obtained in previous chapters.

For the sphere we have for α ∈ [−π2 ,
π
2 ] and the radius R:

γ(t) =

(
R cos(α)

R sin(α)

)
.

For K we get:

K[γ] =
1

2

∫ π
2

−π2
R cos(α)e−R

2/4 ·Rdα

=
1

2
R2e−R

2/4

∫ π
2

−π2
cos(α)dα

= R2e−R
2/4.

To obtain a maximum for R we differentiate with respect to R.

d1

dR
K[γ] =

(
2R− 1

2
R2

)
e−R

2/4 = −1

2
R(R2 − 4)e−R

2/4.

This is the same expression as we obtained earlier and again the radius for the
sphere is R = 2.

Angenent’s doughnut The advantage of this reduction is that it suffices to
find a geodesic in the plane endowed with the metric x exp(−|x2 + y2|/4). This
can be done using theory of differential equations. Angenent proved this way
that there is a geodesic γ inside the plane with the above metric that is closed
and symmetric. Therefore there exists a self-shrinking torus.

Figure 8: The geodesic that creates Angenent’s doughnut when rotated around the
v-axis. This picture is taken from Chopp [4].
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5.4 The algorithm

The algorithm is comprised of two steps. In a first step the surface is evolved
under mean curvature flow or a similar flow in order to locally minimize the
Gaussian area J . In a second step the surface is renormalized by homothety to
compensate for the homothetic instability.

First step: evolving The first step is responsible for the local minimization of
the Gaussian area J . This can be done by mean curvature flow. But since we are
interested in finding a stationary point for J we can invoke basically any flow
that locally minimizes J .

Figure 9: The force at each vertex results from the attempt to minimize the adjacent
triangles (faces). The resulting force of a vertex can then be used to mimic mean
curvature flow.

The surface evolver of Brakke represents the surfaces by a triangulation. The
basic assumption for the evolution is that each triangle attempts to minimize
its area, resulting in a force vector on each of its three vertices (see figure 9).
The evolver then calculates the resulting force vector for each vertex. Finally it
determines an optimal scale factor σ such that the surface moved by the vertex
force vectors times σ minimizes the area.

Second step: renormalization The surface evolver has no inbuilt function
for renormalization as we invoke it in the second step of our algorithm. Recall
that the aim of this step is to control the homothetic instability by rescaling a
surface such that the Gaussian area J becomes stationary under homothety.

Although we do not provide a proof for it, the algorithm assumes that the Gaus-
sian area has to be maximizied in order to find the stationary point. If this
was not the case the surface would be stable under homothety anyway and we
would not need to invoke this second step. Thus the purpose of the subroutines
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provided here is to find the maximum of a function f(λ) which happens to be
the Gaussian metric J in our case.

For any surface N a homothetic expansion by the factor λ results in a surface
λN for which we can calculate the Gaussian area:

J [λN ] =

∫
λN

f(x)dH2

=

∫
N

f(λx)λ2dH2

=

∫
N

1

4π
e−λ

2|x|2/4λ2dH2.

Thus instead of performing real expansion we can also modify the metric of
the Gaussian space in order to obtain J [λN ]. The metric used in our datafiles
therefore contains an additional parameter λ which is set to λ = 1 during most
of the time. By changing λ we then can simulate an expansion. Inside the
program this parameter λ is called mpar – short for metric parameter.

Finding the maximum Let f(x) be a real valued function and assume that
f(x) has exactly one maximum for 0 < x < ∞. We assume further that the
maximum is somewhere “near” the point x0 = 1. Then we have the following
algorithm for the initial value x0 = 1 and the initial stepwidth ∆.

[1] Calculate the values y−n = f(xn −∆), yn = f(xn) and y+n = f(xn + ∆).

[2] Determine the largest value of y−n , yn, y
+
n . If y−n is the maximum then

set xn+1 = xn − ∆ and go back to [1]. If y+n is the maximum then set
xn+1 = xn + ∆ and go back to [1].

[3] If y−n and y+n are both smaller than yn then refine the stepwidth ∆′ = 1
2∆

and try again with step [1].

The exact value xmax for which f(xmax) is a maximum might be an irrational
number or another number that exceeds the accuracy of the used floating point
numbers. In that case the algorithm might run for a very long time trying to find
an exact value by refining the stepwidth. That’s why the algorithm is limited to
a maximum number of iterations Nmax. This in turn also limits the possible
accuracy of the result to 2−Nmax∆.

When a possible maximum value xmax is found f(x) is transformed to a new
function f̃(x) such that the maximum value is mapped to 1: f(xmax) = f̃(1).
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Applying the maximum-algorithm For any surface the maximum-algorithm
as depicted above is applied to the Gaussian area J [N ], that is f(λ) = J [λN ]. As
mentioned earlier the J [λN ]’s are evaluated by changing the metric. After the
maximum-algorithm has found a maximizing λ (which could be 1), the surface
is actually expanded or shrinked by the factor λ.

As the surface converges to a stationary one, the homothety factor λ converges
to 1. To keep up the desired accuracy the initial stepwidth ∆ will be choosen
smaller with time, confining the maximum-algorithm to a smaller range but
allowing it to find the factors λ with more accuracy.

Source code Below we present the actual evolver source code used for the
algorithm. The reader who is familiar with the evolver might find it handy. The
algorithm works fine with different surfaces but the actual expansion procedure
has to be modified to suit the needs of the surfaces (e. g. respecting constraints).

Note that the actual implementation of the algorithm given below differs slightly
from the algorithm described above. The two cases of expansion (λ > 1) and
shrinking (λ < 1) are completely separated. This is due to an earlier draft
that was used for the actual computations. However the basic idea remains the
same.

/*
* METRIC
*/

conformal_metric
1/(4*pi)*e^(-(x^2+y^2+z^2)*mpar^2/4)*mpar^2

/*
* The surface-data and constraints would appear here.
*/

/*
* READ-SECTION
*/

read

/*
* The following parameters are used inside the algorithm.
*/

par := 1;
max_find_steps := 50;
metric_delta := 1/32;

/*
* "ex" is a command to expand or shrink the surface
* homothetically. May be changed in order to respect
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* the constraints.
*/

ex := {set vertex x x*par;
set vertex y y*par;
set vertex z z*par}

/*
* "find_expand" expands the surface until the expansion would
* decrease the area. Thus we can find a maximum.
*/

find_expand := {
TA_1 := total_area;
mpar_orig := mpar;
n_delta := metric_delta;
for (var_I := 1; var_I < max_find_steps; var_I += 1)

{
mpar += n_delta;
recalc;
TA_2 := total_area;
if (TA_2 <= TA_1)

then {mpar -= n_delta; n_delta := n_delta / 2}
else {TA_1 := TA_2};

};
par := mpar;
mpar := mpar_orig;

}

/*
* "find_shrink" shrinks the surface until the shrinked surface
* would decrease the area.
*/

find_shrink := {
TA_1 := total_area;
mpar_orig := mpar;
n_delta := metric_delta;
for (var_I := 1; var_I < max_find_steps; var_I += 1)

{
if (n_delta >= mpar) then {n_delta := mpar * 0.45};
mpar -= n_delta;
recalc;
TA_2 := total_area;
if (TA_2 <= TA_1)

then {mpar += n_delta; n_delta := n_delta / 2}
else {TA_1 := TA_2};

};
par := mpar;
mpar := mpar_orig;

}

/*
* "find_max" tests whether the surface should be expanded or
* shrinked and calls then "find_expand" or "find_shrink"
* respectively.
*/

find_max := {
TA_1 := total_area;
mpar_orig := mpar;
mpar -= metric_delta;



38 Self-Similar Shrinkers in R3

recalc;
TA_2 := total_area;
mpar := mpar_orig;
recalc;
if (TA_2 > TA_1)

then find_shrink
else find_expand;

if not (par = 1) then ex;
}

/*
* The "gg"-command evolves two steps under MCF and then applies
* the "find_max"-algorithm. "next" refines the stepwidth for the
* "find_max"-algorithm.
*/

gg := {g 2; find_max}
next := {metric_delta /= 4};

5.5 Self-shrinkers

In this chapter we finally discuss some possible self-shrinkers. We will start with
the most simple ones and then proceed to more complicated surfaces. Many
more can be found in Chopp [4] or Ilmanen [10].

Sphere Apart from the plane the sphere is definitely the most simple self-
shrinker. Nevertheless the sphere is homothetically unstable as mentioned be-
fore. It provides therefore a good testing ground for the algorithm.

Figure 10: We start off with a polyhedron that is topologically equivalent to the
sphere and then evolve it in order to find the sphere as a stationary surface.

Starting with a polyhedron as seen in figure 10 the surface converges indeed to
a sphere – as far as a triangulated surface can represent a sphere at all. From the
calculations made before the expected radius of this sphere is R = 2. Because
of the triangulation this result will hardly be achieved. Comparing the distances
of all vertices from the origin one finds that R ∈ [1.9986; 2.0047] which is off the
exact result less than 0.5%.
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Cylinder The second surface to test the algorithm is the cylinder. Although the
cylinder is a very simple surface with many similarities to the sphere, it turns
out that evolving the cylinder is much harder than evolving the sphere.

For one thing the cylinder is not a compact surface but extends to infinity. This
of course cannot be done with a computer. We need to chop the infinite cylinder
and work with a relatively small segment of it.

Figure 11: When evolving the cylinder, it comes up with an unexpected instability
and eventually converges to the sphere.

To take the infinite size of the cylinder into account we impose constraints on
the two borders. The nature of these constraints influences the behaviour of
the cylinder. As the computer tries to minimize area, the facets adjacent to the
border tend to be perpendicular to the imposed constraint as seen in figure 12.
This is because the shortest distance between a surface and a point is a straight
line perpendicular to the surface.

Figure 12: The facets of the surface (red) that touch the constraint (black) tend to
be perpendicular to the constraint. This can cause perturbations.

In our computations we found it nearly impossible to create a stable cylinder.
This might have several reasons. There might be a further instability direction
we did not yet take into account. In particular we could not impose a translatory
symmetry that would force the cylinder to act more homogeneously.

Furthermore with the chopping of the cylinder to a finite length we loose an im-
portant information. beyond the chopping border the cylinder could have caps
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instead of reaching to infinity. In that case the surface is convex and therefore
has to converge to a sphere, according to theorem 5.

Whilst it might be possible to modify the algorithm to control an additional
instability in a similar way as we did for the homothetic instability, the sec-
ond consideration indicates that we are actually dealing with a completely new
problem. Then the chopping of the cylinder is not as harmless as expected but
causes a substantial change.

An attempt to increase the length of the cylinder section did not work out.
Because of the Gaussian metric the computation of the forces far away from the
origin has significant rounding errors. In fact the endings of the cylinder did not
move at all but stayed in their polygonial initial shape.

Desingularized surfaces The simplest self-shrinkers are the plane, the sphere
and the cylinder. In order to find new self-shrinkers it is therefore natural trying
to combine any two of these three to build a new surface.

Unfortunately the union of two simple self-shrinkers creates singularities just as
the union of two planes would along the intersection line. So to get a regular
smoothly embedded surface the singularities are removed by tiny holes along
the intersection lines, inspired by the Scherk tower. The so obtained surface is
expected to converge then to a self-shrinker very similar to the starting surface.

Xuan Hien Nguyen describes the process in more detail and provides a partial
proof that the union of the plane and a cylinder indeed can be slightly altered
to become a self-shrinker. However we will not go into details of the theoretical
results here but concentrate on numerical results. See [12] for details.

Union of sphere and plane The union of a sphere and a plane has already
been investigated by Ilmanen (see [10]). In particular he has numerically found
two self-shrinking surfaces. The first one with three holes on either side (top
and bottom) does not particularly resemble the union of a sphere and a plane.
But the second one with nine holes on either side looks strongly like the union
of a sphere and a cylinder.

Another surface of this class was found by Chopp (see [4]). It is a punctured
saddle, as shown in figure 15. Note that there is a symmetry that maps the
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Figure 13: The triply punctured surface found by T. Ilmanen. This picture was
recreated using our algorithm.

Figure 14: The nonuply punctured surface found by T. Ilmanen. The picture can
be found on Ilmanen’s homepage.

handle onto the hole. What we see as handle here becomes a hole when viewed
from below whereas our hole becomes the handle.

Union of cylinder and plane The union of the plane and the cylinder suffers
from the same instability problem as does the cylinder. Our initial surfaces
converge to the surfaces found by Ilmanen and Chopp (see preceding section).
The peak seen in the final pictures is due to the constraints we imposed on the
upper and lower borders. At these points the surface would naturally pinch off
and change topology.
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Figure 15: The punctured saddle found by D. Chopp.

Figure 16: Evolving the cylinder union a plane with 3 holes.
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Figure 17: Evolving the cylinder union a plane with 2 holes.
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