
The Error Behind The Message:
Finding the Cause of Error Messages in Python

Tobias Kohn
University of Cambridge

Cambridge, UK
tk534@cam.ac.uk

ABSTRACT
The interaction between a novice programmer, and the compiler
plays a crucial role in the learning process of the novice programmer.
Of particular importance is the compiler’s feedback on errors in
the program code. Accordingly, compiler error messages are an
important and active field of research. Yet, a language that has
largely been left out of this discussion so far is Python.

We have collected Python programs from high school students
taking introductory courses. For each collected erroneous program,
we sought to classify the effective error, and assess if the student was
able to fix the error. Our study is a precursor to providing improved
errormessages in Python, and assess their effectiveness. As such, we
are eventually interested in findingways to automatically determine
the effective error, so as to base the displayed message on.

From our data, we found that a considerable part of students’
errors can be attributed to minor mistakes, which can easily be
identified and corrected. However, beyond such minor mistakes,
a proper error diagnosis might have to be based on a goal/plan
analysis of the entire program. Likewise, proper assessment of
whether an error has been fixed frequently requires more context
than is provided by the program alone.

ACM Reference Format:
Tobias Kohn. 2019. The Error Behind The Message: Finding the Cause
of Error Messages in Python. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE ’19), February 27-March
2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3287324.3287381

1 INTRODUCTION
Making mistakes and correcting them is an important aspect of
learning. A central piece of this process is good feedback to the
learner, which then leads to the correction and effective learning
process. In programming, students’ mistakes manifest themselves
as syntax errors or bugs in the program. While syntax errors pro-
hibit a successful compilation and execution of the program, bugs
become visible through the program’s output. Unfortunately, the
feedback given by compilers on syntax errors is often inadequate
and provides little assistance for the student to correct the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287381

In order to improve the automated feedback produced by com-
pilers, we need to study how good the displayed message matches
the actual, underlying error in the program code, as well as if the
message then enables the student to successfully correct the error.
That is, good and helpful feedback relates both to the student’s
error, as well as the correction.

We are undertaking endeavours to develop helpful error mes-
sages for Python. To that end, we have written a parser that detects
and identifies over one hundred different syntax errors [11]. In or-
der to assess the quality of the error messages, we want to develop
a metric that measures how well the messages fit the underlying
errors and if the messages enable students to correct their code.

As a first step towards a metric, we have collected and analysed
about 4000 Python programs with errors from high school students.
Based on the data, we sought to distinguish between trivial errors,
such as misspellings or inadvertent slips, and errors that might
indicate some misconception or problem. Inadvertent slips are to
be expected quite frequently even in programs of professionals.

Measuring the effects of error messages on the students is far
from trivial, and there is no single, accepted metric. We thus tried to
find patterns in the data, which might lead to a reliable automated
assessment.

2 RESEARCH QUESTIONS
We have collected 4091 instances of error messages, each with the
student’s program that led to the error message, as well as the
subsequent program the student tried to run. Analysing the data,
we address the following questions:

(RQ1) How often are errors due to minor, superficial mistakes,
which should be easily fixed when pointed out?

(RQ2) Do the displayed error messages correspond to the ac-
tual underlying errors?

(RQ3) Is there any evidence that the error messages have an
effect on the students at all?

(RQ4) Can we derive a metric for measuring automatically if
a student has fixed a certain error?

RQ1: What is the number of minor mistakes? The study of com-
piler error messages in education is to some extend based on the
premise that the syntax errors are due to misconceptions of the
students. While misconceptions are an important source of errors,
some syntax errors are simply due to “typing mistakes” or “inad-
vertent slips” [19].

We assume that students do not profit from long, explanatory
error messages in the case of minor mistakes. Rather, the error mes-
sages should be kept as short as possible, and act as brief reminder.
Moreover, minor mistakes are not related to misconceptions of

https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3287324.3287381

students. Hence, the amount of minor mistakes leading to a certain
error message being displayed should be taken into account when
enhancing error messages.

The classification of an error as a minor mistake depends on the
student and the exact situation. For our study, we decided to count
as a minor mistake what could be fixed with a simple edit, such as,
e. g., inserting a character.

RQ2: Do the error messages report the actual underlying errors? As
pointed out by i. a., Dy and Rodrigo [8], or McCall and Kölling [13],
there is a difference between the true error in the student’s source
code and the compiler error message (CEM) displayed. The im-
provement of error detection is aimed at closing the gap between
the underlying error, and the CEM. We are therefore interested in
assessing if the data shows limitations to how close true errors and
their messages can get.

RQ3: Do error messages have an effect on students? During class-
room sessions, we observed that some students would not read
the displayed error message, but rather focus on the code at the
highlighted position in their source code. This seemed particularly
true for longer, explanatory messages. If the hypothesis that a sig-
nificant part of errors is easy to fix when pointed out holds, then
the error messages might be irrelevant for this class of errors. On
the other hand, for more complex errors, the error messages might
not provide enough information for the students to fix the error at
all. It is therefore not obvious that the error messages itself play a
non-trivial role.

If the error message does play a role, then the collected data
should contain samples, where the students’ response correlates
with the error message, even when alternative modifications to the
source code would make more sense.

RQ4: Can we decide if an error has been fixed? When proposing
new enhanced error messages, we need to assess if the messages
help the students fix the problem pointed out by the message. One
possibility is to check if the student’s subsequent compilation at-
tempt succeeds, or if and where the student has modified the source
code. For our study, we were interested if a student’s editing of the
source code and the disappearance of an error are a reliable metric.

3 RELATEDWORK
It has been noted early on that compilers often produce inade-
quate error messages of poor quality [5]. Numerous projects have
therefore been put forward to address the problem, and enhance or
improve the error messages presented to the novice programmers,
e. g., [3, 9, 18], often with limited success [4, 6, 14]. More recent
research has started to investigate if the displayed error messages
actually correspond to the underlying error [8, 13], or if students
read and react to error messages [2, 12, 16].

Most research agrees in that a small set of syntax errors in
novices’ programs make up for the bulk of all errors encountered.
This has been established for Java by, e. g. Jackson et al. [10], Denny
et al. [7], and Altadmri and Brown [1], and for Python by Pritchard
[17]. It thus makes sense to concentrate research on these most
frequent compiler error messages (CEMs) to assess if enhancing or
improving CEMs has an effect on the students.

Students have difficulties understanding CEMs and relating them
to their code. One approach to address this issue is to enhance CEMs
with additional information about what kind of error could be the
cause of the CEM, or how it might be fixed, thus providing the
novice with the knowledge an expert might have.

However, evaluating the effectiveness of enhanced CEMs proves
to be difficult, and studies have found mixed results. Denny et al. [6]
studied the number of compilations attempts (submissions), and
whether the enhanced CEMs led to a reduction in submissions
with errors, but found no effect. Becker [3] found that enhanced
CEMs do have a positive effect on the number of erroneous sub-
missions, however, a later study [4] could not confirm these results.
Nienaltowski et al. [14] also studied the effect of enhanced CEMs,
but found that longer messages with additional information did
neither improve the number of correct answers, nor the response
time of students in their questionnaire. Odekirk and Zachary [15]
concluded from their study with C programmers that those who
received enhanced feedback needed less help from the teaching
assistants. Finally, Marceau et al. [12] note that “there is no single
metric for the ‘effectiveness’ of an error message”. They propose a
metric based on whether the students make a reasonable edit. Their
metric requires the judgement from an experienced instructor.

Since enhancing error messages has resulted in little success
so far, Barik et al. [2] and Prather et al. [16] have investigated
if students actually read the error messages. Using eye tracking,
Barik et al. found that, indeed, students spend considerable time on
reading CEMs and conclude that reading and understanding error
messages is about as hard as reading program code. Prather et al.
also found that students read the error messages, but also note that
some students were so unfamiliar with the materials that the CEMs
were of little help to them.

The need to add typical causes for error messages already hints
at the obvious difference between the actual underlying error, and
the displayed error message. Dy and Rodrigo [8] investigated “non-
literal” error messages: messages that do not match the actual error.
They note that inaccurate CEMs are a source of problems for novice
programmers. Furthermore, there are errors in novices’ programs,
whose nature remains ambiguous even to expert programmers. Mc-
Call and Kölling [13] clearly distinguish between the programmer’s
misconception, the concrete error in the program, and the diagnostic
message displayed by the compiler. They point out that the compiler
error message often depends on the compiler’s internal structure,
and that there is no simple correspondence between the underly-
ing error, and the displayed message. Depending on the context,
the same misconception or error can lead to different CEMs being
displayed. On the other hand, different errors can also lead to the
same CEM.

Traver [19] presents an extensive study of the problem of com-
piler error messages. Among other things, Traver remarks that the
most frequent errors do not necessarily represent the most difficult
errors to fix. Furthermore, errors are not only due to lack of knowl-
edge, or misconceptions, but also due to inadvertent slips. Traver
also states that the quality of compiler error messages matters, as
adequate messages can help the programmer to not simply make
random edits to address the error. Additionally, helpful error mes-
sages can reduce the workload of instructors explaining the same
messages over and over to students.

4 METHOD
Collection of Data. We made our Python editor publicly avail-

able1. The editor/parser came with the option to send error reports
and anonymised copies of the programs back to us. This option was
not enabled by default, but was on an opt-in basis. Each student
could decide at any time whether to take part in our study or not.

Upon start up, the editor would generate a large random se-
quence as unique identifier, and send all reports together with this
identifier. This allowed us to track a student’s progress during a
session. Typically, a session would last for an hour at school, but if
the editor was restarted, it would generate a new identifier.

Swiss high schools with participating students teach their pro-
gramming courses between grades 9 and 12, with the majority
taking place in 10th grade. The courses serve as a first introduc-
tion to programming, but typically 5 % to 10 % of students in these
classes have some prior programming experience.

The introductory classes followed a common curriculum, which
is based on turtle graphics. Students are introduced to functions,
simple loops, parameters, variables, conditional execution, and lists.

Size of Data. All error reports were collected during one year.
During this period, we have collected a total of 5440 user sessions,
each containing several subsequent Python programs along with
all errors reported to the student. The number of programs within a
session, as well as the number of reported errors varied greatly. We
extracted 6981 raw error messages from the recordings, but only
4091 were directly relevant for our study (see below).

In order to get an estimate of the number of participating stu-
dents, we looked at the number of recorded sessions each week. On
average, we recorded 121 weekly sessions, with a median of 120,
and a standard deviation of σ = 76.34. The highest number was
298 sessions during one week. When looking at the distribution
of weekly sessions, holiday weeks can easily be recognised: the
number of submissions dropped then to an average of 26.6 with
a median of 31. Counting only the non-holiday weeks, the over-
all average is 152 with σ = 60.28, and a median of 130. Based on
these numbers, and given weekly classes at school, we estimate
the number of participating students in the order of 100 to perhaps
150 students.

Selection of Data. Not all recorded error messages were directly
usable for our study. Accordingly, we had to remove some of the
collected submissions from our data set, leaving 4091 of the total of
6981 error reports for further analysis.

Our editor only recorded the main programs, but not additional
files or modules. Thus, if the error was located inside an imported
module, we were unable to inspect the erroneous code.

1The IDE is freely available under http://jython.tobiaskohn.ch

Program 1 We classified the extra space in the += operator as a
minor misspelling.

x = 0
sum = 0
while x < 100:

x += 1
sum+ = x

x = 0
sum = 0
while x < 100:

x+= 1
sum = x

Runtime errors were mostly filtered out. While we retained name
errors and type errors, we discarded other runtime errors such as “file
not found” or “division by zero”. We only kept errors that directly
stemmed from syntactic or semantic issues with the code.

5 RESULTS: THE NATURE OF ERRORS
5.1 Minor Mistakes
Among the 4091 error instances, we classified 1233 instances as
minor, superficial mistakes or misspellings, hence about 30 % of all
instances. Most of these misspellings produced name error mes-
sages, as well as various messages indicating not properly closed
tokens and statements (see Table 1). That students were able to
directly fix 95 % of these error instances supports the idea of minor
mistakes, which pose little problems to the students.

Displayed error message (CEM) [ALL] [FIX]

Name Error 570 544
Missing ‘)’ 144 132
Missing Comma 109 102
Missing ’:’ 94 94
Inconsistent Indentation 64 60
Unterminated String 50 48
Total 1233 1174

Table 1: Of the 1233 instances of minor mistakes, 46 % led to
a name error being displayed. Students where then able to
directly fix it in over 95 %.

An error instance classified as minor if the underlying error
could be corrected by a simple edit, i. e. swapping two characters,
replacing a character by a different one, or inserting or deleting a
character. However, the code around the minor mistake needed to
be correct otherwise. For instance, a missing colon at the end of
a line would only count as a minor mistake if the body beneath
was properly indented. The juxtaposition of two statements as in
Program 13 was not counted as a minor mistake, even though it
can be corrected by a single edit. However, such an instance has
a high probability to come from a misconception. When in doubt,
we chose to rather not classify a particular instance as minor.

Program 2 The displayed error “NameError: name S is not defined.”
is caused by a simple mismatch of upper-/lower case. The student
“fixed” the CEM by filling in a value for the parameter (which we
classified as a “rewrite”).

def hexagon(s):
for i in range(6):

forward(S)
right(60)

hexagon(100)

def hexagon(s):
for i in range(6):

forward(100)
right(60)

hexagon(100)

Nonetheless, Program 1 and Program 2 both show instances
where the students modified the program to avoid further error
messages, but did not fix the actual underlying error. Given the
rather trivial nature of the errors, it is unclear as of why the students
seemed unable to fix it.

http://jython.tobiaskohn.ch

Program 3 Python finds that the name s cannot be resolved (rais-
ing a “NameError” at runtime), whereas the actual error is due to
incorrect indentation of the for.
def square(s, color):

pencolor(color)
for i in range(4):

forward(s)
right(90)

def square(s, color):
pencolor(color)
for i in range(4):

forward(s)
right(90)

Program 4 Two examples where the student typed a comma in-
stead of a dot. These errors were reported as “NameError”, and
“TypeError: wrong number of arguments”, respectively.

for i in range(100):
x = randint(0, 10)
numbers,append(x)

def circle(r, clr):
...

circle(0,5, "red")

Program 5 The error message “else without if” might be confusing,
because there is, in fact, even more than one if. The true error is
the wrong indentation of the else.

if key in [LEFT, RIGHT]:
if key == LEFT:

heading(-90)
elif key == RIGHT:

heading(90)
else:

forward(10)

Program6 Python reports a “namep not found” error in the second
line. But the obvious intention of this statement is not to define n,
but rather p as the square root of n.

n = input("Enter a number:")
n = p * p
if p % 1 == 0:

print "This is a square number"

In addition to the minor mistakes, we found another 35 instances
of random artefacts, and remarks. Examples of artefacts include
line numbers at the start of each line, or small notes and remarks,
which have the character of comments. Most of these notes simply
read “Exercise 4.2” or similar.

5.2 Actual and Displayed Errors
Python only has a limited set of error categories. In our context,
SyntaxError, IndentationError, NameError, and TypeError are rele-
vant. On first sight, this small set suggests that each error can easily
be assigned to the correct category. However, as the examples in
Program 3, Program 4, and Program 5 show, even in this limited
range of error categories, the reported error might not be the actual
error.

For instance, of the 1462 name errors in the data set, 47 were
due to incorrect indentation or scoping. In another 30 instances,
the student used the name of a parameter in a function call instead
of providing an argument value. We also found 120 cases where
the name error was due to missing string delimiters, as in, e. g.,
pencolor(red).

In the case of “else without if”, 11 of the 13 instances were due to
wrong indentation. As Python allows loops to have an else clause,
the compiler might often not be able to detect a misplaced else
(consider Program 5 with a while at the top).

Errors as in Program 4 are difficult to identify. Python is dy-
namically typed, which is to say that functions do not specify the
type of their arguments. Moreover, it is often not even possible to
clearly determine the correct number of arguments, or even know
the function’s signature in advance. In fact, the turtle module in
Python defines all its functions dynamically, which means that
virtually no information is available at compile time. In a case like
pencolor(dark red), it is therefore difficult for the parser to de-
termine that there are string delimiters missing. There could, for
instance, also be a comma missing between “dark” and “red”.

Another case where the error cannot be automatically identified
is shown in Program 8. Possibilities include that the last line should
be indented, that the body of the if-statement is missing entirely,
or even that the if-statement should not be part of the function
“onClick”.

In seven instances, the students had flipped the assignment, and
wrote 3 = x instead of x = 3. The underlying error of putting the
target of an assignment on the right instead of on the left becomes
muchmore difficult to recognise in cases like x = y. Misconceptions
can even lead to examples such as shown in Program 6, where two
errors (“assignment to right” and “assignment to expression”) are
combined, and thereby lead to valid, albeit wrong, syntax.

Program 7 In this instance of “NameError: name s is not defined.”,
the student simply removed the offending variable. The entire struc-
ture of this program hints at a basic misconception concerning the
scope of variables, or the effect of the return statement.

def average(a, b):
s = (a+b)/2
return s

average(2,6)
print s

def average(a, b):
s = (a+b)/2
return s

average(2,6)
print

6 RESULTS: STUDENTS’ REACTIONS
6.1 Statistics
Table 2 provides an overview of the most frequent error messages
encountered in the collected data. For each instance in our collec-
tion, we looked at the students’ reaction to the CEM, and applied a
metric similar to the one found in Marceau et al. [12]. In contrast
to Marceau et al., we were more concerned with how the students
fixed the CEM, rather than their reaction in general, leading to dif-
ferent categories. [FIX] means that the student has directly fixed the
proximate error in a meaningful way (although other errors might
persist). [DEL] means that the student deleted the entire problematic
passage (deleting, e. g., an entire function). [RWR] stands for rewrites.
As discussed below, these are edits where the student has somehow
addressed the CEM by rewriting the code, but not actually fixed the
error itself. If a student just deleted individual tokens, but left the
overall structure, we counted it as a rewrite rather than a deletion.
Finally, there were other kinds of edits not captured by these three
categories.

Error Category Total [FIX][RWR][DEL]

Name Error: Cannot Find Name 1462 1252 59 97
Wrong/Inconsistent Indentation 608 485 16 82
Type Error 349 287 17 18
Missing Comma or Operator 249 197 3 22
Missing/Mismatched Brackets 240 223 12 2
Total 4091 3428 176 345

Table 2: The most common error categories with students’
reactions.

A case as seen in Program 13 was classified as [FIX], because
the resulting program worked as expected, even though putting a
comma is not necessarily a “good” edit.

6.2 Rewrites
Falling Back on Familiar Techniques. Using new programming

techniques can be a challenge to students. The data contains exam-
ples, where students have tried to use a probably new programming
construct, but failed because of some (syntactic) detail. In these ex-
amples the students then fall back to using familiar techniques
instead of fixing the syntax error (Program 10, Program 9).

From the perspective of the compiler, it seems that the students
successfully addressed the error and fixed the problem. If we want
to evaluate if the error message has been helpful, however, the
picture changes. Even though the program behaves correctly, the
student was clearly unable to really fix the error at hand.

Fixing the Wrong Thing. Fixing a CEM does not necessarily mean
that the underlying problem is solved at all. In some cases, the
result compiles (and executes) without error, but does not behave as
intended. It is possible to discern two basic student behaviours here.
In some instances, the students merely removed the offending part
(Program 7). In other instances, the students applied some change
to fix the CEM, but thereby introduced logical bugs (Program 8).

Program 8 Instead of fixing the error according to the message
“there is a body or indentation missing”, the student un-indented
the if-statement. The program will run without further problems,
because dotsize is a global variable. Nevertheless, the if-statement
never really takes effect.

dotsize = 10
def onClick(x, y):

global dotsize
dot(dotsize)
dotsize += 5
if dotsize > 30:
dotsize = 10

dotsize = 10
def onClick(x, y):

global dotsize
dot(dotsize)
dotsize += 5

if dotsize > 30:
dotsize = 10

Program 9 After the message “there is a body or indentation miss-
ing”, the student unrolled the loop, altogether.

for i in range(4):
draw_figure(100)

draw_figure(100)
draw_figure(100)
draw_figure(100)
draw_figure(100)

Program 10 After the message “to call a function, you must add
parentheses”, the student directly inlined the function’s body in-
stead of adding the necessary parentheses.

def square500(red):
for i in range(4):

forward(500)
right(90)

forward(20)
square500

def square500(red):
...

forward(20)
for i in range(4):

forward(500)
right(90)

Program 11 Even though the error message “there is an else with-
out an if” is technically correct, it does not capture the actual prob-
lem of the unindented break statement. The student obviously fixed
the displayed syntax error, but did not address the true issue here.

t = 2
while t < x:

r = x % t
if r == 0:

print "not prime"
break
else

t += 1

t = 2
while t < x:

r = x % t
if r == 0:

print "not prime"
break
if r != 0:

t += 1

6.3 The Case of “Missing Comma”
A particular case did not receive the necessary attention during
the construction of the parser. When, during the parsing process,
an expression is immediately followed by another expression, our
parser displays the message that there is a comma missing. We
did not, however, anticipate that such a case would occur rather
frequently and that putting a comma would be wrong most of the
time (see Program 12).

Of the 214 instances that the parser classified as “commamissing”,
putting a commawould have been correct only in 86 instances (40 %).
This means that the students got wrong advice in the remaining
128 instances. In 23 of these instances, the students did put a comma,
even though this was not correct, and in 9 additional cases, the
students put a comma to separate statements (Program 13). In other
words, 32 instances in our data set show that the students read the
error message and followed its implied course of action.

6.4 Misconceptions
Program 13 shows an example from our collection, where a student
reacted to the “missing comma” message by inserting a comma.
Python uses the semicolon to separate statements on the same line.
In this case, however, the comma works, too, as it forms a tuple of
the values returned by the two function calls.

Later on, several programs contained longer tuples of turtle
commands, such as, e. g., fd(80),rt(120),fd(80),.... However,
once programs includemore than simple function calls, the chaining
as tuples breaks down, as shown by the two error instances in
Program 14. In these instances, the comma has become part of the
expression and can no longer be used to separate statements.

The samples where a comma is used to chain statements are
rather isolated instances in our data set. This example, however,
indicates that error messages can, indeed, help students to learn,

Program 12 Examples of where the parser displayed a “missing
comma” error message. Only in the first case is the message correct.

[(20, 25) (60, 25)]

forward 100

pen color("red")

input()"your name:"

Program 13 After the error message “missing comma”, the student
added, indeed, a comma, arriving from the statement on the left to
the tuple on the right. In Python, the tuple is legal code, and will
execute as intended.
forward(100)right(100) forward(100),right(100)

Program 14 Two instances, where using the comma as separator
between statements does not work as intended.
print "...", i+=1 x = 0, y = 0

and form conceptual theories about the programming language,
and its syntax and semantics. When enhancing error messages, care
must be taken so as not to build or foster new misconceptions.

7 DISCUSSION
RQ1: What is the number of minor mistakes? With 30%, minor

mistakes make up a significant part of all the errors collected in our
study. Almost half of these minor mistakes manifest themselves as
name errors. The errors of a missing closing parenthesis, however,
are more serious: there are several cases where standard Python
keeps parsing the file, and then reports a completely unrelated error
at a later location. Improved error detection can go a long way in
helping students in such a case.

RQ2: Do the error messages report the actual underlying errors?
Reporting the actual errors in the program code is not only hard in
the case of failed compiling attempts. Even syntax errors might just
alter a program’s logic, and still satisfy the syntactic rules. Moreover,
different possible errors can lead to patterns indistinguishable to
the compiler, as has also been found in [13].

Not all errors lead necessarily to syntax errors and, moreover, a
proper identification of errors requires deeper analysis of a program
than is usually performed by a compiler. Hence, the compiler might
be the wrong tool to identify and report errors in the first place.
Finally, some errors remain ambiguous even to humans, without
knowledge of the programmer’s goals and plans. This finding is in
accordance with [8].

Furthermore, notes and artefacts, such as “exercise 4”, are for a
machine virtually impossible to distinguish from actual code. Even
more so as the same program might contain such an artefact, and a
function named “exercise4”.

On the other hand, even when the compiler error message does
not reflect the actual error (as, e. g., in Programs 3 to 5), the message
might still give enough information about the problem to be helpful.
After all, students were able to fix the errors in over 80 % of the
collected instances.

RQ3: Do error messages have an effect on students? Our parser
issued incorrect error messages in 128 instances. In 25 % of these
cases, the students followed the parser’s implicit suggestion. Even

though the sample size is very small, this indicates that at least some
students rely on the CEM displayed to them. Other possible effects
such as reducing the time needed to fix a program, or reducing the
number of attempts needed to write a correct program were not
considered in this study.

RQ4: Can we decide if an error has been fixed? Apart from the
difficulty of reliably diagnosing the error in the underlying pro-
gram, automatically classifying a student’s response proves to be
extremely difficult. In various instances, the students addressed
the CEM rather than the underlying error. Among the strategies
employed by students to cope with the error, we found that some
students would just remove any problematic parts, or rewrite them
in a simpler way, probably more familiar to them. Conversely, in
the case of irrelevant artefacts and notes in the source file, deleting
the offending part is, indeed, the right course of action. Checking
subsequent compilation attempts for the reported CEMs, or the
nature of edits seems therefore an unreliable metric.

Deciding if a particular error has been fixed depends highly on
additional circumstances. Additional information such as the goal
a program is supposed to achieve might be indispensable.

8 THREATS TO VALIDITY
Themanual assessment of program code runs the danger of a strong
bias or subjective component. Various examples of students’ code
illustrate the difficulty of properly assessing the exact type of error,
the student’s true intention, or even the student’s response to the
CEM. Furthermore, Python only provides rather crude categories
for CEMs, making comparisons difficult.

Probably the largest problem is a proper definition of when
an error should be considered a minor, superficial mistake as in
RQ1. We decided to be as conservative as possible, only counting
instances that clearly satisfy a hard rule and do not show a strong
likelihood of an actual misconception.

9 CONCLUSION
Helpful compiler error messages (CEM) should help the program-
mer correct syntax errors in the program code. Assessing the quality
of CEMs involves two independent metrics: the representation of
the actual error in the code by the message and the information
given to the programmer. In particular, a good metric should mea-
sure if the student is able to fix the actual error, instead of just
reacting to the CEM.

We have analysed about 4000 error instances of Python programs
from high school students and found that a considerable part of
the errors are due to minor mistakes, such as misspellings. The
nature of other errors or the students’ responses, however, cannot
always be reliably determined, even by humans, without knowing
the goals and plans behind the program. Moreover, the compiler is
not even able to detect all syntax errors or correctly classify them.

The reason why enhancing CEMs so often appears to be inef-
fective might thus be due to many errors being easy to fix even
without further help, while other errors are not actually captured
by the CEM at all. Moreover, if students try to fix the CEM rather
than the error itself, the recurrence of CEMs, say, might not be a
good indicator for a student’s progress.

REFERENCES
[1] A. Altadmri and N. C. Brown. 37 million compilations: Investigating novice

programming mistakes in large-scale student data. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education, SIGCSE ’15, pages
522–527, New York, NY, USA, 2015. ACM.

[2] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill, and C. Parnin. Do
developers read compiler error messages? In Proceedings of the 39th International
Conference on Software Engineering, ICSE ’17, pages 575–585, Piscataway, NJ,
USA, 2017. IEEE Press.

[3] B. A. Becker. An effective approach to enhancing compiler error messages. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
SIGCSE ’16, pages 126–131, New York, NY, USA, 2016. ACM.

[4] B. A. Becker, K. Goslin, and G. Glanville. The effects of enhanced compiler error
messages on a syntax error debugging test. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, SIGCSE ’18, pages 640–645,
New York, NY, USA, 2018. ACM.

[5] P. J. Brown. Error messages: The neglected area of the man/machine interface.
Commun. ACM, 26(4):246–249, Apr. 1983.

[6] P. Denny, A. Luxton-Reilly, and D. Carpenter. Enhancing syntax error messages
appears ineffectual. In Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education, ITiCSE ’14, pages 273–278, New York,
NY, USA, 2014. ACM.

[7] P. Denny, A. Luxton-Reilly, and E. Tempero. All syntax errors are not equal. In
Proceedings of the 17th ACM Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’12, pages 75–80, New York, NY, USA, 2012.
ACM.

[8] T. Dy and M. M. Rodrigo. A detector for non-literal java errors. In Proceedings of
the 10th Koli Calling International Conference on Computing Education Research,
Koli Calling ’10, pages 118–122, New York, NY, USA, 2010. ACM.

[9] M. Hristova, A. Misra, M. Rutter, and R. Mercuri. Identifying and correcting java
programming errors for introductory computer science students. SIGCSE Bull.,
35(1):153–156, Jan. 2003.

[10] J. Jackson, M. Cobb, and C. Carver. Identifying top java errors for novice pro-
grammers. In Proceedings Frontiers in Education 35th Annual Conference, pages
T4C–T4C, Oct 2005.

[11] T. Kohn. Teaching Python Programming to Novices: Addressing Misconceptions
and Creating a Development Environment. PhD thesis, ETH Zurich, 2017.

[12] G. Marceau, K. Fisler, and S. Krishnamurthi. Measuring the effectiveness of error
messages designed for novice programmers. In Proceedings of the 42Nd ACM
Technical Symposium on Computer Science Education, SIGCSE ’11, pages 499–504,
New York, NY, USA, 2011. ACM.

[13] D. McCall and M. Kölling. Meaningful categorisation of novice programmer
errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pages
1–8, Oct 2014.

[14] M.-H. Nienaltowski, M. Pedroni, and B. Meyer. Compiler error messages: What
can help novices? In Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE ’08, pages 168–172, New York, NY, USA,
2008. ACM.

[15] E. Odekirk-Hash and J. L. Zachary. Automated feedback on programs means
students need less help from teachers. In Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ’01, pages 55–59,
New York, NY, USA, 2001. ACM.

[16] J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer, N. Simone, and M. Cohen.
On novices’ interaction with compiler error messages: A human factors approach.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research, ICER ’17, pages 74–82, New York, NY, USA, 2017. ACM.

[17] D. Pritchard. Frequency distribution of error messages. In Proceedings of the
6th Workshop on Evaluation and Usability of Programming Languages and Tools,
PLATEAU 2015, pages 1–8, New York, NY, USA, 2015. ACM.

[18] T. Schorsch. Cap: An automated self-assessment tool to check pascal programs
for syntax, logic and style errors. In Proceedings of the Twenty-sixth SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ’95, pages 168–172,
New York, NY, USA, 1995. ACM.

[19] V. J. Traver. On compiler error messages: what they say and what they mean.
Advances in Human-Computer Interaction, 2010, 2010.

	Abstract
	1 Introduction
	2 Research Questions
	3 Related Work
	4 Method
	5 Results: The Nature of Errors
	5.1 Minor Mistakes
	5.2 Actual and Displayed Errors

	6 Results: Students' Reactions
	6.1 Statistics
	6.2 Rewrites
	6.3 The Case of ``Missing Comma''
	6.4 Misconceptions

	7 Discussion
	8 Threats to Validity
	9 Conclusion
	References

