
Programming in Python
A Brief Introduction with TigerJython and Turtle-Graphics

Dr Tobias Kohn

c© 2015–2019, Dr Tobias Kohn
http://jython.tobiaskohn.ch/

Get TigerJython from:
https://www.tjgroup.ch/engl/index.php

https://webtigerjython.ethz.ch/

http://jython.tobiaskohn.ch/
https://www.tjgroup.ch/engl/index.php
https://webtigerjython.ethz.ch/

Programming in Python 3

1 Turtle-Graphics

Basics You are going to control a small turtle with a pen on the
screen. When the turtle is moving, it draws a trace with its pen, creating
pictures. For the purpose of this script we use «TigerJython», which is
a dialect of Python.

Turtle graphics is just one of many extension modules that come with
Python. At the beginning of your program, you need to explicitly load
(import) the module for turtle graphics. In TigerJython, the module for
turtle graphics is called «gturtle» (the «g» stands for «graphics»). Once
it is loaded, use makeTurtle() (line 2) to create a new window with
the turtle in it.

from gturtle import *
makeTurtle()

Your program comes here

Make sure you type the first two lines exactly as shown here. Even the
parentheses following makeTurtle are necessary. However, anything
following a hash # will be ignored by Python.

Example: Drawing a Triangle This program has the turtle draw a
triangle with one right angle and two 45◦ angles. To get a 45◦ angle,
the turtle has to turn by 135◦! Note how we use sqrt(2) to get the
square root of 2.

1 from gturtle import *
2 makeTurtle()

3

4 forward(100 * sqrt(2))

5 right(135)

6 forward(100)

7 right(90)

8 forward(100)

EXERCISES

1. Have your turtle draw one or both of these two shapes:

c© 2019, Dr Tobias Kohn

4 Programming in Python

Controlling the Turtle The turtle can move forward in a straight
line, turn left or right (without moving), or draw a dot at its current
position.

s
a a

left(a) forward(s) right(a)

a

Figure 1: forward(s) makes the turtle move forward s pixels,
left(a) and right(a) turn the turtle on its spot to the left or
right, respectively. When drawing a shape, note that the angle
given is the outside angle of the polygon (on the far right).

dot(d)

d

penUp() penDown()

Figure 2: dot(d) draws a single
dot with diameter d. Use penUp()

and penDown() to move the turtle
without drawing its trace.

Overview of Turtle Commands

forward(s) Move s pixels forward.
left(w) Turn w degrees to the left.
right(w) Turn w degrees to the right.
dot(d) Draw a dot with diameter d.
setPenColor("c") Use c for the pen’s colour.
penWidth(b) Set the pen’s width to w.
penUp() Raise the pen to not draw anymore.
penDown() Lower the pen to continue drawing.
clear("c") Fill the entire window with the colour c.
setFillColor("c") Set the colour to fill shapes.
startPath() Start drawing a shape to fill.
fillPath() Fill the shape.
hideTurtle() Make the turtle invisible and fast.
showTurtle() Make the turtle visible again.
speed(-1) Set the turtle to maximum speed.
setPos(x, y) Place the turtle at (x, y).
moveTo(x, y) Draw a line to the coordinates (x, y).
label("text") Write the given text at the current position.

c© 2019, Dr Tobias Kohn

Turtle-Graphics 5

Colour and Linewidth You can choose both the colour, and the
width of the pen, with which the turtle is drawing its trace. To choose
the colour, use setPenColor("colour") (do not forget the quotation
marks around the colour) and setPenWidth(width) (numbers have no
quotation marks), e. g. setPenColour("red") and setPenWidth(3).

yellow

gold

orange

red

dark red

brown

magenta

purple

navy

blue

cyan green

white

black

gray

sienna

dark green

lime green

Figure 3: This is a small selection of colours available for
setPenColor("colour")

Example: Trafic Lights The turtle draws trafic lights. The black box
is actually just a broad line.

1 from gturtle import *
2 makeTurtle()

3

4 setPenColor("black")

5 penWidth(40)

6 forward(80)

7

8 left(180)

9 penUp()

10

11 setPenColor("red")

12 dot(30)

13 forward(40)

14

15 setPenColor("yellow")

16 dot(30)

17 forward(40)

18

19 setPenColor("green")

20 dot(30)

21 forward(40)

c© 2019, Dr Tobias Kohn

6 Programming in Python

Filling Areas With Colour In order to fill an area, you can draw so
many lines that they completely cover the area. Luckily, if you give it
a shape, the turtle already knows how to fill it with a colour, saving
us a lot of work. You have to use startPath() to tell where you start
drawing the shape to fill. With fillPath() you then make the turtle
fill this shape with colour.

Example: A Square in Red and White Between the (marked) com-
mands startPath() and fillPath(), the turtle covers the entire area
with colour. After fillPath(), it goes back to just drawing the traces.

1 from gturtle import *
2 makeTurtle()

3

4 setPenColor("red")

5 setFillColor("red")

6

7 startPath() # <-

8 right(45)

9 forward(100)

10 left(90)

11 forward(100)

12 fillPath() # <-

13

14 left(90)

15 forward(100)

16 left(90)

17 forward(100)

EXERCISES

2. When drawing one of the following shapes, make sure you only
cover the area that is supposed to be coloured.

c© 2019, Dr Tobias Kohn

Repetitions 7

2 Repetitions

Loops If you want to draw a square, you have to repeat the same
two lines four times. However, instead of repeating yourself four times
as on the left, you can ask Python to do the repeating. repeat 4: tells
Python to repeat all subsequent lines that are indented four times.

from gturtle import *
makeTurtle()

forward(100)

left(90)

forward(100)

left(90)

forward(100)

left(90)

forward(100)

left(90)

from gturtle import *
makeTurtle()

repeat 4:

forward(100)

left(90)

Make sure to indent all lines that should be repeated by the same num-
ber of spaces.

Note: repeat is a feature of the TigerJython-dialect and not available in
other versions of Python.

Example: Draw a Pentagon This program has the turtle draw a
pentagon instead of a square. The number of repetitions if now five.
The last command fillPath() is not part of the repetition scheme. It
is only executed after all repetitions above have completed.

1 from gturtle import *
2 makeTurtle()

3

4 right(90)

5 startPath()

6 setFillColor("sky blue")

7 repeat 5:

8 forward(100)

9 left(72)

10 fillPath()

The 360◦-Rule Whenever the turtle draws a closed shape, it will
have turned around by a full circle, i. e. 360◦. For a pentagon, the turtle
is turning five times, and hence 360◦/5 = 72◦ each time.

c© 2019, Dr Tobias Kohn

8 Programming in Python

Python can do the division «360/5» on its own:

repeat 5:

forward(100)

left(360 / 5)

Example: The Necklace With twelve vertices, this necklace looks
almost round. Indeed, a polygon with 36 or more vertices can usually
not be distiniguished from a circle.

1 from gturtle import *
2 makeTurtle()

3

4 left(75)

5 repeat 12:

6 dot(10)

7 forward(20)

8 right(30)

9 hideTurtle()

EXERCISES

3. Have the turtle draw the snowflake as seen below on the left.

4. Have the turtle draw a small chess board as seen above in the mid-
dle, or the stairs above on the right.

5. Have the turtle draw the chinese character for «good fortune» as
seen on the right.

6. Have the turtle draw a sailboat, or any of the other two shapes in
the picture below. In order to draw the circles of the locomotive, you
can either use dot(d), or draw a regular polygon with 36 vertices.

c© 2019, Dr Tobias Kohn

Make Your Own Language 9

3 Make Your Own Language

New Commands Programming is all about extending the program-
ming language and adding new commands. In Python, you use def to
define a new command, which you can then use as often as you want.
A command for drawing an equilateral triangle might look like this:

1 from gturtle import *
2 makeTurtle()

3

4 def triangle():

5 repeat 3:

6 forward(100)

7 left(120)

8

9 triangle() # Actually draw the triangle

10 right(90)

11 triangle() # And yet another one

Parameters The true power of defining new commands comes using
the same program code with different values. After the command’s
name, you can specify one or more parameters. When you actually call
(use) the command, you fill in the numbers for these parameters.

1 from gturtle import *
2 makeTurtle()

3

4 def square(side):

5 repeat 4:

6 forward(side)

7 right(90)

8

9 square(80) # side = 80

10 setPenColor("red")

11 square(60) # side = 60

Example: Polygons This ploygon command has two parameters: n
and side.

1 from gturtle import *
2 makeTurtle()

3

4 def polygon(n, side):

5 repeat n:

6 forward(side)

7 left(360 / n)

8

9 polygon(5, 120) # n = 5, side = 120

c© 2019, Dr Tobias Kohn

10 Programming in Python

Changing Parameter Values Inside your command, you can change
the value of a parameter as often and whenever you like. If t is your
parameter, use t += 1 to increase its value by one, t -= 1 to decrease
it by one, or even t = 123 to set it to a specific value altogether.

1 from gturtle import *
2

3 def spiral(s):

4 repeat 30:

5 forward(s)

6 s += 3

7 left(60)

8

9 makeTurtle()

10 spiral(2)

Example: A Heart By slightly changing the angle instead of the step
length, we get a heart shape.

1 from gturtle import *
2

3 def heart_shape_L(angle):

4 repeat 16:

5 forward(10)

6 left(angle)

7 angle -= 2

8

9 def heart_shape_R(angle):

10 repeat 16:

11 forward(10)

12 right(angle)

13 angle -= 2

14

15 makeTurtle()

16 setPenWidth(2)

17 heart_shape_L(30)

18 home()

19 heart_shape_R(30)

EXERCISES

7. Have the turtle draw the figure with nested squares. You can double
the value of a parameter s by s *= 2, or use s /= 2 to cut it in half.

c© 2019, Dr Tobias Kohn

Animation 11

4 Animation

An animation consists basically of three steps. First, you draw a picture
(the frame) onto the screen. Then you wait for a few milliseconds. And
finally, you update the elements in the picture to their next positions.
In Python code:

repeat 1000:

draw_frame()

delay(40)

update_frame()

Example: Turning Square To make a shape rotate, all we have to
do is turn the turtle a little bit each time. The updating of the frame is
thus very simple here.

1 from gturtle import *
2

3 def square(s):

4 repeat 4:

5 forward(s)

6 right(90)

7

8 def draw_frame():

9 clear()

10 forward(150)

11 right(135)

12 square(150 * sqrt(2))

13 left(135)

14 back(150)

15

16 makeTurtle()

17 hideTurtle()

18 setPenWidth(3)

19 repeat 1000:

20 draw_frame()

21 delay(40)

22 right(2) # update frame

EXERCISES

8. Code a program that displays a simple watch. It has a single hand
for the seconds going around.

c© 2019, Dr Tobias Kohn

12 Programming in Python

Example: Random Walk Image the turtle holding a red latern that
glows in the dark. Since the turtle cannot see in the dark, it changes
its directly randomly for each new frame. We keep the angle between
−45◦ and +45◦ to avoid sharp turns.

1 from gturtle import *
2 from random import randint

3

4 def draw_frame():

5 clear("black")

6 dot(15)

7 def update_frame():

8 angle = randint(-45, 45)

9 left(angle)

10 forward(4)

11 makeTurtle()

12 hideTurtle()

13 setPenColor("red")

14 penUp()

15 repeat 10000:

16 key = getKeyCode()

17 if key != 0:

18 break
19 draw_frame()

20 delay(20)

21 update_frame()

22 dispose() # close window

In each repetition of the loop, we check if a key is pressed. If the key
code is not zero (a key is pressed), then we break out of the loop.
You can use the keys to completely control the moving dot, and thus
eventually create a computer game.

repeat 1000:

clear("navy")

dot(20)

delay(20)

key = getKeyCode()

if key == 37: # LEFT

left(90)

forward(5)

right(90)

if key == 39: # RIGHT

right(90)

forward(5)

left(90)

if key == 38: # UP

forward(5)

if key == 40: # DOWN

back(5)

if key == 32: # SPACE

break

c© 2019, Dr Tobias Kohn

Using Coordinates 13

5 Using Coordinates

Instead of telling the turtle how to turn at each point, you can also
specify a shape through the coordinates of its vertices. Python then
goes through our list and moves the turtle to each vertex (x, y) in turn.

1 from gturtle import *
2

3 SHAPE = [(80, 90), (4, 60), (50, -10)]

4

5 makeTurtle()

6 setPos(50, -10)

7 for (x, y) in SHAPE:

8 # for each vertex (x, y) do the following:

9 moveTo(x, y)

Example: Plotting the Graph of a Function This program plots the
graph of the function f(x) given by:

f(x) =
x · (x− 75) · (x+ 75)

3000

First, we define the function f , which returns a value computed from
its parameter x. When drawing the actual function, we calculate the
y-coordinate for each x-coordinate by using the function f(x).

1 from gturtle import *
2

3 def f(x):

4 return x * (x - 75) * (x + 75) / 3000

5

6 makeTurtle()

7 setPenWidth(2)

8 x = -100

9 y = f(-100)

10 setPos(x, y)

11 repeat 200:

12 x += 1

13 y = f(x)

14 moveTo(x, y)

Example: Ball In the Box By using coordinates, we can start to
create more elaborate animations and simulations. In this example, we
have the ball between two (invisible) walls on the left and on the right,
from where it is thrown back.

The global variables X,Y are the current position of our ball. SX and
SY give its speed. Since we want to use these global variables inside

c© 2019, Dr Tobias Kohn

14 Programming in Python

our commands, we say so through global X, Y in the first line of the
respective function.

Whenever the x-coordinate gets larger than 200, we reverse the speed
SX in this direction. This looks like a reflection, and you can do the
same for top and bottom with y-coordinates.

1 from gturtle import *
2

3 X, Y = -20, 90

4 S_X, S_Y = 4.5, -0.75

5

6 def draw_frame():

7 global X, Y

8 clear("black")

9 setPos(X, Y)

10 dot(20)

11

12 def update_frame():

13 global X, Y, S_X, S_Y

14 X += S_X

15 Y += S_Y

16 if X > 200:

17 S_X = -S_X

18 if X < -200:

19 S_X = -S_X

20

21 makeTurtle()

22 hideTurtle()

23 penUp()

24 setPenColor("red")

25 repeat 500:

26 draw_frame()

27 delay(10)

28 update_frame()

EXERCISES

9. Complete the program above by having the ball also being reflected
at the floor below and the ceiling above. You may even want to draw
the entire box as part of the draw_frame() command.

10. At the moment, clear("black") clears the entire screen with black.
However, if we use a colour that is slightly translucent, the old image
can still shine through. Use makeColor() to make a color translucent:
clear(makeColor("black", 0.25)).

c© 2019, Dr Tobias Kohn

Using Coordinates 15

Many Objects Objects act like containers for variables. In this pro-
gram, we create an object for each ball, which then holds the position
and speed of the ball. This way, you can have as many balls as you like,
each with its own position, speed, colour, or even size.

1 from gturtle import *
2

3 class ball:

4 def __init__(self, x, y, s_x, s_y, color):

5 self.x = x

6 self.y = y

7 self.s_x = s_x

8 self.s_y = s_y

9 self.color = color

10

11 def draw(self):

12 setPos(self.x, self.y)

13 setPenColor(self.color)

14 dot(10)

15

16 def update(self):

17 self.x += self.s_x

18 self.y += self.s_y

19

20 balls = [ball(30, 40, 3, 6, "red"),

21 ball(-50, 60, 5, -1, "gold")]

22

23 def draw_frame():

24 global balls

25 clear("black")

26 for ball in balls:

27 ball.draw()

28

29 def update_frame():

30 global balls

31 for ball in balls:

32 ball.update()

33

34 makeTurtle()

35 hideTurtle()

36 repeat 100:

37 draw_frame()

38 delay(40)

39 update_frame()

40 if getKeyCode() == 32:

41 balls.append(ball(-40, 50, 2, -3, "cyan"))

Whenever you hit the space bar, a new ball is added, thanks to the last
two lines. If you use randint() (see page 12), you can add the balls
at random positions.

c© 2019, Dr Tobias Kohn

16 Programming in Python

6 Colour Gradients and Replacing Colours

Making Colours Use the function makeColor(r, g, b) to create
your own colour by telling the computer, how much red, green, and blue
your colour should contain. Each value must be given as a number in
the range 0.0− 1.0. For instance, makeColor(1.0, 0.7, 0) gives you
a nice orange.

Replacing Colours In this example, we first draw a black star. Then
we scan it line by line and replace all black pixels by another colour to
give the star a more interesting look.

Depending on your system,
you will have to replace
the "black" in line 16
by "#000000" or something
similar.

1 from gturtle import *
2

3 def star(s):

4 left(18)

5 startPath()

6 repeat 5:

7 forward(s)

8 right(72)

9 forward(s)

10 left(144)

11 fillPath()

12 right(18)

13

14 def replace_line(s):

15 repeat s:

16 if getPixelColorStr() == "black":

17 dot(1)

18 forward(1)

19

20 makeTurtle()

21 hideTurtle()

22 setPos(100, 0)

23 star(40)

24 setPos(0, 0)

25 penUp()

26 i = 0

27 repeat 100:

28 c = makeColor(1.0, 1.0 - i, 0.0)

29 setPenColor(c)

30 i += 1 / 100

31 right(90)

32 replace_line(150)

33 back(150)

34 left(90)

35 forward(1)

c© 2019, Dr Tobias Kohn

The Turtle Finds Its Way Through A Maze 17

7 The Turtle Finds Its Way Through A Maze

The Basic Grid In this section, we no longer work with turtle graph-
ics. Instead, the turtle lives in a grid with blocks and walls, which we
can use to form to be a veritable maze. When creating the grid, you
can specify its dimensions.

1 from tjgrids import *
2 makeTurtle(20, 15)

Controlling the Turtle The commands for moving the turtle are very
similar to what we had before, but turning always happens in 90◦ and
no longer requires an angle.

forward(s) Move s cells forward.
left() Turn 90◦ degrees to the left.
right() Turn 90◦ degrees to the right.
setPos(x, y) Place the turtle at (x, y).
setCell(n) Set a cell’s value to n.
getCell() Return a cell’s current value.
canGoForward() Checks if the turtle can move forward.
canGoRight() Checks if the turtle can move to the right.
canGoLeft() Checks if the turtle can move to the left.

Each cell can hold a small number, which is represented through its
colour. «0» is an empty, white cell, «1» is a wall, «2» red, «3» yellow, «4»
green, «5» blue, and «6» black. Use setCell() to set the value of the
cell the turtle is currently in.

1 from tjgrids import *
2 makeTurtle(20, 20)

3

4 setPos(10, 10)

5 setCell(2)

6 forward()

7 setCell(3)

8 right()

9 forward()

10 setCell(2)

11 right()

12 forward()

13 setCell(3)

c© 2019, Dr Tobias Kohn

18 Programming in Python

You may also want the turtle to react to a cell’s colour. For instance,
the turtle could turn left on yellow cells, and right on red cells as in the
following program.

1 from tjgrids import *
2 makeTurtle(20, 20)

3

4 setPos(10, 10)

5 repeat 30:

6 if getCell() == 2:

7 setCell(3)

8 right()

9 elif getCell() == 3:

10 setCell(2)

11 left()

12 else:
13 setCell(2)

14 left()

15 left()

16 forward(1)

Finding a Way through a Maze In this program, the turtle is search-
ing for a red cell. Whenever it can, it will turn and go to the right.
Otherwise it tries to move forward, or turn to the left. This simple rule
will, indeed, get you out of many mazes – although it might not be very
efficient.

1 from tjgrids import *
2 makeGrid("labyrinth1")

3

4 while getCell() != 2:

5 if canGoRight():

6 right()

7 forward(1)

8 elif canGoForward():

9 forward(1)

10 else:
11 left()

EXERCISES

11. How could you trap a turtle that uses the above strategy to find its
way out of a maze?

12. Find a different strategy to get out of the maze. You might want to
use the colours to mark cells where the turtle has already been.

c© 2019, Dr Tobias Kohn

	Turtle-Graphics
	Repetitions
	Make Your Own Language
	Animation
	Using Coordinates
	Colour Gradients and Replacing Colours
	The Turtle Finds Its Way Through A Maze

